Sunghoon Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11243469/publications.pdf

Version: 2024-02-01

1040056 1125743 16 691 9 13 citations h-index g-index papers 16 16 16 1288 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable Antibacterial and Antiviral High-Performance Copper-Coated Filter Produced via Ion Beam Treatment. Polymers, 2022, 14, 1007.	4.5	5
2	Characterization and FEA evaluation of a ZrB2–SiC ceramic containing TaC for beam–column joint application. Ceramics International, 2021, 47, 11438-11450.	4.8	10
3	Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers, 2021, 13, 1367.	4.5	64
4	Preliminary Validation of a Continuum Model for Dimple Patterns on Polyethylene Naphthalate via Ar Ion Beam Sputtering. Polymers, 2021, 13, 1932.	4.5	3
5	Electrochemical Synthesis of 3D Plasmonicâ€Molecule Nanocomposite Materials for In Situ Labelâ€Free Molecular Detections. Advanced Materials Interfaces, 2021, 8, 2101201.	3.7	2
6	Electrochemical Synthesis of 3D Plasmonicâ€Molecule Nanocomposite Materials for In Situ Labelâ€Free Molecular Detections (Adv. Mater. Interfaces 21/2021). Advanced Materials Interfaces, 2021, 8, .	3.7	0
7	Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model. Materials, 2020, 13, 2213.	2.9	18
8	Carbon nano-onions from waste oil for application in energy storage devices. New Journal of Chemistry, 2020, 44, 7369-7375.	2.8	57
9	Improving Electrical Conductivity of PEDOT:PSS with Phase Separation by Applying Electric Fields. Bulletin of the Korean Chemical Society, 2018, 39, 469-476.	1.9	9
10	Improving Conductivity of Metal Grids by Controlling Sintering Process. Journal of the Korean Institute of Surface Engineering, 2015, 48, 158-162.	0.1	0
11	Extremely Flexible Transparent Conducting Electrodes for Organic Devices. Advanced Energy Materials, 2014, 4, 1300474.	19.5	97
12	The enhancement of electrical and optical properties of PEDOT:PSS using one-step dynamic etching for flexible application. Organic Electronics, 2014, 15, 1849-1855.	2.6	36
13	Highly Efficient and Bendable Organic Solar Cells with Solutionâ€Processed Silver Nanowire Electrodes. Advanced Functional Materials, 2013, 23, 4177-4184.	14.9	308
14	All-spray-coated semitransparent inverted organic solar cells: From electron selective to anode layers. Organic Electronics, 2012, 13, 2940-2944.	2.6	23
15	Fully spray-coated inverted organic solar cells. Solar Energy Materials and Solar Cells, 2012, 103, 76-79.	6.2	57
16	Effect of iron nanoparticles on spark plasma sinterability of ZrB2-based ceramics. Journal of the Australian Ceramic Society, 0, , .	1.9	2