Anna Radominska-Pandya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11243274/publications.pdf

Version: 2024-02-01

94 papers

4,673 citations

94433 37 h-index 98798 67 g-index

94 all docs 94 docs citations 94 times ranked 3897 citing authors

#	Article	IF	CITATIONS
1	Characterization of cannabinoid receptors expressed in Ewing sarcoma TC-71 and A-673 cells as potential targets for anti-cancer drug development. Life Sciences, 2021, 285, 119993.	4.3	1
2	Significance of Competing Metabolic Pathways for 5F-APINACA Based on Quantitative Kinetics. Molecules, 2020, 25, 4820.	3.8	2
3	Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacology Biochemistry and Behavior, 2020, 195, 172949.	2.9	15
4	Identifying cytochrome P450s involved in oxidative metabolism of synthetic cannabinoid <i>N</i> a€(adamantanâ€1â€yl)â€1â€(5â€fluoropentyl)â€1 <i>H</i> a€indoleâ€3â€carboxamide (STSâ€135). Phand Perspectives, 2020, 8, e00561.	arm a acolog	gy Research
5	Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22). Xenobiotica, 2019, 49, 1388-1395.	1.1	3
6	Convulsant Effects of Abused Synthetic Cannabinoids JWH-018 and 5F-AB-PINACA Are Mediated by Agonist Actions at CB1 Receptors in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 146-156.	2.5	21
7	Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants. Biochemical and Biophysical Research Communications, 2018, 498, 597-602.	2.1	24
8	Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ9-THC. Frontiers in Pharmacology, 2018, 9, 1084.	3.5	20
9	Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development. PLoS ONE, 2016, 11, e0167240.	2.5	10
10	Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines. Cancer Biology and Therapy, 2015, 16, 714-723.	3.4	18
11	Antitumor 1â€nitroacridine, Câ€1748, Decreases Proâ€survival Autophagy and Induces Accumulation of Lipid Droplets Resulting in Apoptosis of Pancâ€1 Pancreatic Cancer Cells. FASEB Journal, 2015, 29, 715.8.	0.5	O
12	A Potential Role for Human UDP-Glucuronosyltransferase 1A4 Promoter Single Nucleotide Polymorphisms in the Pharmacogenomics of Tamoxifen and Its Derivatives. Drug Metabolism and Disposition, 2014, 42, 1392-1400.	3.3	11
13	Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?. Life Sciences, 2014, 97, 45-54.	4.3	236
14	Singleâ€walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. Journal of Applied Toxicology, 2014, 34, 1188-1199.	2.8	46
15	Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases. Chemical Research in Toxicology, 2014, 27, 536-545.	3.3	9
16	Functional consequences of synthetic cannabinoid metabolites and CYP2C9 polymorphisms (838.4). FASEB Journal, 2014, 28, 838.4.	0.5	0
17	K2 Toxicity: Fatal Case of Psychiatric Complications Following AM2201 Exposure. Journal of Forensic Sciences, 2013, 58, 1676-1680.	1.6	83
18	Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology. Analytical Chemistry, 2013, 85, 9390-9399.	6.5	31

#	Article	IF	CITATIONS
19	Forensic investigation of K2, Spice, and "bath salt―commercial preparations: A three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Science International, 2013, 233, 416-422.	2.2	92
20	Metabolic Transformation of Antitumor Acridinone C-1305 but Not C-1311 via Selective Cellular Expression of UGT1A10 Increases Cytotoxic Response: Implications for Clinical Use. Drug Metabolism and Disposition, 2013, 41, 414-421.	3.3	14
21	CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen. Biochemical and Biophysical Research Communications, 2013, 441, 339-343.	2.1	21
22	Sulfaphenazole and & amp; #945; -Naphthoflavone Attenuate the Metabolism of the Synthetic Cannabinoids JWH-018 and AM2201 Found in K2/Spice. Drug Metabolism Letters, 2013, 7, 34-38.	0.8	11
23	Role of Human UDP-Glucuronosyltransferases in the Biotransformation of the Triazoloacridinone and Imidazoacridinone Antitumor Agents C-1305 and C-1311: Highly Selective Substrates for UGT1A10. Drug Metabolism and Disposition, 2012, 40, 1736-1743.	3.3	20
24	Natural prenylated resveratrol analogs arachidin-1 and -3 demonstrate improved glucuronidation profiles and have affinity for cannabinoid receptors. Xenobiotica, 2012, 42, 139-156.	1.1	42
25	Analysis of <i>R</i> - and <i>S</i> - Hydroxywarfarin Glucuronidation Catalyzed by Human Liver Microsomes and Recombinant UDP-Glucuronosyltransferases. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 46-55.	2.5	15
26	Cytochrome P450-Mediated Oxidative Metabolism of Abused Synthetic Cannabinoids Found in K2/Spice: Identification of Novel Cannabinoid Receptor Ligands. Drug Metabolism and Disposition, 2012, 40, 2174-2184.	3.3	167
27	A Major Glucuronidated Metabolite of JWH-018 Is a Neutral Antagonist at CB1 Receptors. Chemical Research in Toxicology, 2012, 25, 825-827.	3.3	55
28	Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochemical Pharmacology, 2012, 83, 952-961.	4.4	143
29	Glucuronides of antitumor agents Câ€1311 and Câ€1305 modulate cytotoxicity in cancer cells. FASEB Journal, 2012, 26, 966.2.	0.5	O
30	Functionalizedâ€singleâ€walled nanotube (fâ€SWNT)â€assisted in vitro delivery of the oncogene suppressor genes to cancer cells. FASEB Journal, 2012, 26, 580.8.	0.5	0
31	Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens. Steroids, 2011, 76, 1465-1473.	1.8	12
32	Conjugation of Synthetic Cannabinoids JWH-018 and JWH-073, Metabolites by Human UDP-Glucuronosyltransferases. Drug Metabolism and Disposition, 2011, 39, 1967-1976.	3.3	72
33	Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine. Analytical Chemistry, 2011, 83, 4228-4236.	6.5	138
34	Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. International Journal of Nanomedicine, 2011, 6, 1045.	6.7	48
35	Solid-Phase Extraction and Quantitative Measurement of Omega and Omega-1 Metabolites of JWH-018 and JWH-073 in Human Urine. Analytical Chemistry, 2011, 83, 6381-6388.	6.5	92
36	Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells. Xenobiotica, 2011, 41, 1044-1055.	1.1	19

#	Article	IF	CITATIONS
37	Preface. Drug Metabolism Reviews, 2010, 42, 1-2.	3.6	3
38	The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Drug Metabolism Reviews, 2010, 42, 133-144.	3 . 6	66
39	Targeted nanoparticle delivery of tumor suppressing UDPâ€glucuronosyltransferase (UGT) genes into cancer cells. FASEB Journal, 2010, 24, 520.5.	0.5	O
40	Dopamine Is a Low-Affinity and High-Specificity Substrate for the Human UDP-Glucuronosyltransferase 1A10. Drug Metabolism and Disposition, 2009, 37, 768-775.	3.3	50
41	Characterization of Human Hepatic and Extrahepatic UDP-Glucuronosyltransferase Enzymes Involved in the Metabolism of Classic Cannabinoids. Drug Metabolism and Disposition, 2009, 37, 1496-1504.	3.3	129
42	Assessing Cytochrome P450 and UDP-Glucuronosyltransferase Contributions to Warfarin Metabolism in Humans. Chemical Research in Toxicology, 2009, 22, 1239-1245.	3.3	41
43	Comparative characterization of UDPâ€glucuronic acid (UDPâ€GlcUA) bindingâ€site directed inhibitors with human UGT2B7 and 1A10 FASEB Journal, 2009, 23, 750.4.	0.5	O
44	The glucuronidation of native and oxidized estrogens can be effectively inhibited by compounds structurally related to UDPâ€glucuronic acid in human recombinant UGT1A10. FASEB Journal, 2009, 23, 750.2.	0.5	1
45	Characterization of mutation in the 395 DQxD 398 motif of the glucuronic acid binding site in human UGT1A6: Comparison to UGT1A10. FASEB Journal, 2009, 23, 750.5.	0.5	O
46	Novel identification of UDP-glucuronosyltransferase 1A10 as an estrogen-regulated target gene. Steroids, 2008, 73, 139-147.	1.8	21
47	Identification of UDP-glucuronosyltransferase 1A10 in non-malignant and malignant human breast tissues. Steroids, 2008, 73, 611-620.	1.8	33
48	Identification of Hydroxywarfarin Binding Site in Human UDP Glucuronosyltransferase 1A10: Phenylalanine90 Is Crucial for the Glucuronidation of 6- and 7-Hydroxywarfarin but Not 8-Hydroxywarfarin. Drug Metabolism and Disposition, 2008, 36, 2211-2218.	3.3	13
49	Effect of Retinoids on UDP-Glucuronosyltransferase 2B7 mRNA Expression in Caco-2 Cells. Drug Metabolism and Pharmacokinetics, 2008, 23, 364-372.	2.2	16
50	The First Aspartic Acid of the DQxD Motif for Human UDP-Glucuronosyltransferase 1A10 Interacts with UDP-Glucuronic Acid during Catalysis. Drug Metabolism and Disposition, 2008, 36, 517-522.	3.3	16
51	Glucuronidation of Monohydroxylated Warfarin Metabolites by Human Liver Microsomes and Human Recombinant UDP-Glucuronosyltransferases. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 139-148.	2.5	39
52	Human hepatic and extrahepatic UDPâ€glucuronosyltransferase (UGTs) enzymes involved in the metabolism of cannabinoids. FASEB Journal, 2008, 22, 711.4.	0.5	0
53	Human UGT1A8 and UGT1A10 mRNA Are Expressed In Primary Human Hepatocytes. Drug Metabolism and Pharmacokinetics, 2007, 22, 152-161.	2.2	14
54	Phenylalanine90 and phenylalanine93 are crucial amino acids within the estrogen binding site of the human UDP-glucuronosyltransferase 1A10. Steroids, 2007, 72, 85-94.	1.8	32

#	Article	IF	Citations
55	CYP2E1 active site residues in substrate recognition sequence 5 identified by photoaffinity labeling and homology modeling. Archives of Biochemistry and Biophysics, 2007, 459, 59-69.	3.0	24
56	Crystal Structure of the Cofactor-Binding Domain of the Human Phase II Drug-Metabolism Enzyme UDP-Glucuronosyltransferase 2B7. Journal of Molecular Biology, 2007, 369, 498-511.	4.2	169
57	Aspartic Acid 393 of the DxxD Motif within The Câ€Terminal Region of Human UDPâ€Glucuronosyltransferase 1A10 is Critical to the Binding of UDPâ€Glucuronic Acid. FASEB Journal, 2007, 21, A1187.	0.5	O
58	Phenylalanine 90 and 93 Are Localized within the Phenol Binding Site of Human UDP-Glucuronosyltransferase 1A10 as Determined by Photoaffinity Labeling, Mass Spectrometry, and Site-Directed Mutagenesis. Biochemistry, 2006, 45, 2322-2332.	2.5	38
59	Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharmaceutics and Drug Disposition, 2006, 27, 181-189.	1.9	57
60	Phe90 is a crucial amino acid within the estrogen binding site of the human UDPâ€glucuronosyltransferase 1A10. FASEB Journal, 2006, 20, A470.	0.5	0
61	Glucuronidation of Fatty Acids and Prostaglandins by Human UDP-Glucuronosyltransferases. , 2005, , 109-132.		1
62	Transcriptional Regulation of UDP-Glucuronosyltransferases. , 2005, , 133-171.		0
63	A Historical Overview of the Heterologous Expression of Mammalian UDP-Glucuronosyltransferase Isoforms Over the Past Twenty Years. Current Drug Metabolism, 2005, 6, 141-160.	1.2	54
64	Human UDP-Glucuronosyltransferase 1A5: Identification, Expression, and Activity. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1143-1149.	2.5	61
65	LITHOCHOLIC ACID DECREASES EXPRESSION OF UGT2B7 IN CACO-2 CELLS: A POTENTIAL ROLE FOR A NEGATIVE FARNESOID X RECEPTOR RESPONSE ELEMENT. Drug Metabolism and Disposition, 2005, 33, 937-946.	3.3	55
66	Structure of UDPâ€Glucuronosyltransferases in Membranes. Methods in Enzymology, 2005, 400, 116-147.	1.0	42
67	HUMAN PXR VARIANTS AND THEIR DIFFERENTIAL EFFECTS ON THE REGULATION OF HUMAN UDP-GLUCURONOSYLTRANSFERASE GENE EXPRESSION. Drug Metabolism and Disposition, 2004, 32, 340-347.	3.3	149
68	Glucuronidation of oxidized fatty acids and prostaglandins B1 and E2 by human hepatic and recombinant UDP-glucuronosyltransferases. Journal of Lipid Research, 2004, 45, 1694-1703.	4.2	50
69	Orphan nuclear receptor-mediated xenobiotic regulation in drug metabolism. Drug Discovery Today, 2004, 9, 442-449.	6.4	110
70	Carboxyl nonsteroidal anti-inflammatory drugs are efficiently glucuronidated by microsomes of the human gastrointestinal tract. Biochimica Et Biophysica Acta - General Subjects, 2004, 1675, 120-129.	2.4	19
71	Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7. Biochemical Pharmacology, 2003, 65, 417-421.	4.4	41
72	Human gastrointestinal sulfotransferases: identification and distributiona [*] †. Toxicology and Applied Pharmacology, 2003, 187, 186-197.	2.8	73

#	Article	IF	CITATIONS
73	Glucuronidation of catechols by human hepatic, gastric, and intestinal microsomal UDP-glucuronosyltransferases (UGT) and recombinant UGT1A6, UGT1A9, and UGT2B7. Archives of Biochemistry and Biophysics, 2003, 411, 251-261.	3.0	39
74	Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4150-4155.	7.1	347
75	Glucuronidation of the Dietary Fatty Acids, Phytanic Acid and Docosahexaenoic Acid, by Human UDP-Glucuronosyltransferases. Drug Metabolism and Disposition, 2002, 30, 531-533.	3.3	30
76	Critical Role of Diacylglycerol- and Phospholipid-Regulated Protein Kinase Cε in Induction of Low-Density Lipoprotein Receptor Transcription in Response to Depletion of Cholesterol. Molecular and Cellular Biology, 2002, 22, 3783-3793.	2.3	33
77	Photoaffinity Labeling of Human Retinoid X Receptor β (RXRβ) with 9-cis-Retinoic Acid:  Identification of Phytanic Acid, Docosahexaenoic Acid, and Lithocholic Acid as Ligands for RXRβ. Biochemistry, 2002, 41, 4883-4890.	2.5	33
78	Nuclear UDP-Glucuronosyltransferases: Identification of UGT2B7 and UGT1A6 in Human Liver Nuclear Membranes. Archives of Biochemistry and Biophysics, 2002, 399, 37-48.	3.0	29
79	Interindividual variation and organ-specific patterns of glutathione S-transferase alpha, mu, and pi expression in gastrointestinal tract mucosa of normal individuals. Archives of Biochemistry and Biophysics, 2002, 403, 270-276.	3.0	83
80	Glucuronidation of Linoleic Acid Diols by Human Microsomal and Recombinant UDP-Glucuronosyltransferases: Identification of UGT2B7 as the Major Isoform Involved. Archives of Biochemistry and Biophysics, 2001, 389, 176-186.	3.0	19
81	Application of photoaffinity labeling with [3H] all trans- and 9-cis-retinoic acids for characterization of cellular retinoic acid-binding proteins I and II. Protein Science, 2001, 10, 200-211.	7.6	4
82	4-Hydroxyretinoic Acid, a Novel Substrate for Human Liver Microsomal UDP-glucuronosyltransferase(s) and Recombinant UGT2B7. Journal of Biological Chemistry, 2000, 275, 6908-6914.	3.4	99
83	Direct Interaction of All-trans-retinoic Acid with Protein Kinase C (PKC). Journal of Biological Chemistry, 2000, 275, 22324-22330.	3.4	91
84	Linoleic Acid Diols Are Novel Substrates for Human UDP-Glucuronosyltransferases. Archives of Biochemistry and Biophysics, 2000, 380, 294-302.	3.0	28
85	Carboxyl Residues in the Active Site of Human Phenol Sulfotransferase (SULT1A1)â€. Biochemistry, 2000, 39, 16000-16007.	2.5	28
86	Direct Photoaffinity Labeling of Cellular Retinoic Acid-Binding Protein I (CRABP-I) withall-trans-Retinoic Acid: Identification of Amino Acids in the Ligand Binding Siteâ€. Biochemistry, 2000, 39, 12568-12574.	2.5	14
87	Human and Rat Liver UDP-Glucuronosyltransferases Are Targets of Ketoprofen Acylglucuronide. Molecular Pharmacology, 1999, 56, 226-234.	2.3	51
88	Photoaffinity labeling probe for the substrate binding site of human phenol sulfotransferase (SULT1A1): 7â€Azidoâ€4â€methylcoumarin. Protein Science, 1999, 8, 2151-2157.	7.6	35
89	Differential glucuronidation of bile acids, androgens and estrogens by human UGT1A3 and 2B7. Journal of Steroid Biochemistry and Molecular Biology, 1999, 70, 101-108.	2.5	125
90	Photoaffinity Labeling of the Aglycon Binding Site of the Recombinant Human Liver UDP-Glucuronosyltransferase UGT1A6 with 7-Azido-4-methylcoumarin. Archives of Biochemistry and Biophysics, 1999, 368, 75-84.	3.0	12

#	Article	IF	CITATIONS
91	STRUCTURAL AND FUNCTIONAL STUDIES OF UDP-GLUCURONOSYLTRANSFERASES*. Drug Metabolism Reviews, 1999, 31, 817-899.	3.6	448
92	A Functional Role for Histidyl Residues of the UDP-Glucuronic Acid Carrier in Rat Liver Endoplasmic Reticulum Membranesâ€. Biochemistry, 1998, 37, 258-263.	2.5	12
93	Cloning and Expression of Human UDP-Glucuronosyltransferase (UGT) 1A8. Archives of Biochemistry and Biophysics, 1998, 356, 301-305.	3.0	106
94	UDP-glucuronosyltransferases in human intestinal mucosa. Lipids and Lipid Metabolism, 1998, 1394, 199-208.	2.6	95