
Emre Brookes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124257/publications.pdf Version: 2024-02-01

EMDE ROOKES

#	Article	IF	CITATIONS
1	A Disulfide-Stabilized AÎ ² that Forms Dimers but Does Not Form Fibrils. Biochemistry, 2022, 61, 252-264.	2.5	4
2	Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats. Nucleic Acids Research, 2022, 50, 5881-5898.	14.5	8
3	Multi-wavelength analytical ultracentrifugation of biopolymer mixtures and interactions. Analytical Biochemistry, 2022, 652, 114728.	2.4	10
4	Neuropathyâ€associated histidylâ€ŧRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS Journal, 2021, 288, 142-159.	4.7	13
5	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie - International Edition, 2021, 60, 3974-3978.	13.8	10
6	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie, 2021, 133, 4020-4024.	2.0	2
7	Characterizing Drug–Polymer Interactions in Aqueous Solution with Analytical Ultracentrifugation. Molecular Pharmaceutics, 2021, 18, 246-256.	4.6	5
8	Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification. Nature Communications, 2021, 12, 731.	12.8	26
9	Density Matching Multi-wavelength Analytical Ultracentrifugation to Measure Drug Loading of Lipid Nanoparticle Formulations. ACS Nano, 2021, 15, 5068-5076.	14.6	21
10	Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism. Nature Communications, 2021, 12, 1988.	12.8	16
11	Human DDX17 Unwinds Rift Valley Fever Virus Non-Coding RNAs. International Journal of Molecular Sciences, 2021, 22, 54.	4.1	20
12	Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Frontiers in Molecular Biosciences, 2021, 8, 787368.	3.5	2
13	A calibration disk for the correction of radial errors from chromatic aberration and rotor stretch in the Optima AUCâ,,¢ analytical ultracentrifuge. European Biophysics Journal, 2020, 49, 701-709.	2.2	9
14	Multi-wavelength analytical ultracentrifugation as a tool to characterise protein–DNA interactions in solution. European Biophysics Journal, 2020, 49, 819-827.	2.2	10
15	Measuring compressibility in the optima AUCâ,,¢ analytical ultracentrifuge. European Biophysics Journal, 2020, 49, 711-718.	2.2	4
16	Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment. PLoS Computational Biology, 2020, 16, e1007942.	3.2	20
17	The BRPF1 bromodomain is a molecular reader of di-acetyllysine. Current Research in Structural Biology, 2020, 2, 104-115.	2.2	16
18	Nanoscale Structure Determination of Murray Valley Encephalitis and Powassan Virus Non-Coding RNAs. Viruses, 2020, 12, 190.	3.3	12

EMRE BROOKES

#	Article	IF	CITATIONS
19	Probing RNA–Protein Interactions and RNA Compaction by Sedimentation Velocity Analytical Ultracentrifugation. Methods in Molecular Biology, 2020, 2113, 281-317.	0.9	2
20	Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment. , 2020, 16, e1007942.		0
21	Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment. , 2020, 16, e1007942.		Ο
22	Crystallographic Structures of IlvN·Val/Ile Complexes: Conformational Selectivity for Feedback Inhibition of Aceto Hydroxy Acid Synthases. Biochemistry, 2019, 58, 1992-2008.	2.5	3
23	A Proteomic Screen of Neuronal Cell-Surface Molecules Reveals IgLONs as Structurally Conserved Interaction Modules at the Synapse. Structure, 2019, 27, 893-906.e9.	3.3	44
24	Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. MBio, 2019, 10, .	4.1	12
25	Multi-wavelength analytical ultracentrifugation of human serum albumin complexed with porphyrin. European Biophysics Journal, 2018, 47, 789-797.	2.2	16
26	General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins. Journal of Virology, 2018, 92, .	3.4	24
27	Structural and functional characterisation of the entry point to pyocyanin biosynthesis in <i>Pseudomonas aeruginosa</i> defines a new 3-deoxy- <scp>d</scp> -arabino-heptulosonate 7-phosphate synthase subclass. Bioscience Reports, 2018, 38, .	2.4	14
28	Multi-speed sedimentation velocity simulations with UltraScan-III. European Biophysics Journal, 2018, 47, 815-823.	2.2	11
29	Two-dimensional grid optimization for sedimentation velocity analysis in the analytical ultracentrifuge. European Biophysics Journal, 2018, 47, 837-844.	2.2	4
30	The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity. Biochemistry, 2017, 56, 3619-3631.	2.5	19
31	Spectral and Hydrodynamic Analysis of West Nile Virus RNA–Protein Interactions by Multiwavelength Sedimentation Velocity in the Analytical Ultracentrifuge. Analytical Chemistry, 2017, 89, 862-870.	6.5	24
32	2D analysis of polydisperse core–shell nanoparticles using analytical ultracentrifugation. Analyst, The, 2017, 142, 206-217.	3.5	25
33	Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure, 2017, 25, 1519-1529.e4.	3.3	22
34	Structure of a pentameric virion-associated fiber with a potential role in Orsay virus entry to host cells. PLoS Pathogens, 2017, 13, e1006231.	4.7	11
35	<i>US-SOMO</i> HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. Journal of Applied Crystallography, 2016, 49, 1827-1841.	4.5	86
36	KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1. Structure, 2016, 24, 1795-1801.	3.3	49

EMRE BROOKES

#	Article	IF	CITATIONS
37	BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nature Communications, 2016, 7, 13343.	12.8	52
38	A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein. Cell Communication and Signaling, 2016, 14, 17.	6.5	11
39	Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature, 2016, 530, 358-361.	27.8	88
40	Analytical Ultracentrifugation Data Analysis with UltraScan-III. , 2016, , 119-143.		62
41	Next-Generation AUC. Methods in Enzymology, 2015, 562, 27-47.	1.0	33
42	Next-Generation AUC Adds a Spectral Dimension. Methods in Enzymology, 2015, 562, 1-26.	1.0	32
43	Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles. Journal of Physical Chemistry B, 2015, 119, 15502-15508.	2.6	8
44	Structural and Mechanistic Insights into the Latrophilin3-FLRT3 Complex that Mediates Clutamatergic Synapse Development. Structure, 2015, 23, 1665-1677.	3.3	42
45	Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18625-18630.	7.1	215
46	A Parametrically Constrained Optimization Method for Fitting Sedimentation Velocity Experiments. Biophysical Journal, 2014, 106, 1741-1750.	0.5	56
47	Characterization of Size, Anisotropy, and Density Heterogeneity of Nanoparticles by Sedimentation Velocity. Analytical Chemistry, 2014, 86, 7688-7695.	6.5	74
48	Fibrinogen species as resolved by HPLC-SAXS data processing within the <i>UltraScan Solution Modeler</i> (<i>US-SOMO</i>) enhanced SAS module. Journal of Applied Crystallography, 2013, 46, 1823-1833.	4.5	57
49	A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. European Biophysics Journal, 2010, 39, 405-414.	2.2	198
50	The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. European Biophysics Journal, 2010, 39, 423-435.	2.2	111
51	Developments in the US OMO Bead Modeling Suite: New Features in the Direct Residueâ€ŧoâ€Bead Method, Improved Grid Routines, and Influence of Accessible Surface Area Screening. Macromolecular Bioscience, 2010, 10, 746-753.	4.1	55
52	Methods for the Design and Analysis of Sedimentation Velocity and Sedimentation Equilibrium Experiments with Proteins. Current Protocols in Protein Science, 2010, 60, Unit 7.13.	2.8	82
53	Chapter 4 Analysis of Heterogeneity in Molecular Weight and Shape by Analytical Ultracentrifugation Using Parallel Distributed Computing. Methods in Enzymology, 2009, 454, 87-113.	1.0	35
54	Sedimentation velocity analysis of highly heterogeneous systems. Analytical Biochemistry, 2004, 335, 279-288.	2.4	232

#	Article	IF	CITATIONS
55	Preformed GroES oligomers are not required as functional cochaperonins. The Protein Journal, 1997, 16, 661-668.	1.1	5