
Michael S Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11240534/publications.pdf Version: 2024-02-01

MICHAELS MITCHELL

#	Article	IF	CITATIONS
1	Economical defence of resources structures territorial space use in a cooperative carnivore. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212512.	2.6	8
2	Competition, prey, and mortalities influence gray wolf group size. Journal of Wildlife Management, 2022, 86, .	1.8	7
3	Consequences of migratory strategy on habitat selection by mule deer. Journal of Wildlife Management, 2022, 86, .	1.8	2
4	Estimating Abundance of an Unmarked, Lowâ€Đensity Species using Cameras. Journal of Wildlife Management, 2021, 85, 87-96.	1.8	27
5	Evidence of economical territory selection in a cooperative carnivore. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210108.	2.6	6
6	Habitat selection by wolves and mountain lions during summer in western Montana. PLoS ONE, 2021, 16, e0254827.	2.5	5
7	Assessing the robustness of timeâ€ŧoâ€event models for estimating unmarked wildlife abundance using remote cameras. Ecological Applications, 2021, 31, e02388.	3.8	8
8	The economics of territory selection. Ecological Modelling, 2020, 438, 109329.	2.5	13
9	Environmental and social factors influencing wolf (<i>Canis lupus</i>) howling behavior. Ethology, 2020, 126, 890-899.	1.1	4
10	Using spatiallyâ€explicit capture–recapture models to explain variation in seasonal density patterns of sympatric ursids. Ecography, 2019, 42, 237-248.	4.5	15
11	A collaborative approach to bridging the gap between wildlife managers and researchers. Journal of Wildlife Management, 2019, 83, 1644-1651.	1.8	24
12	Native forage mediates influence of irrigated agriculture on migratory behaviour of elk. Journal of Animal Ecology, 2019, 88, 1100-1110.	2.8	14
13	Elk forage and risk tradeoffs during the fall archery season. Journal of Wildlife Management, 2019, 83, 801-816.	1.8	17
14	Land management alters traditional nutritional benefits of migration for elk. Journal of Wildlife Management, 2019, 83, 167-174.	1.8	30
15	Stable pack abundance and distribution in a harvested wolf population. Journal of Wildlife Management, 2019, 83, 577-590.	1.8	9
16	Explicitly reporting tests of hypotheses improves communication of science. Journal of Wildlife Management, 2018, 82, 671-673.	1.8	3
17	Factors influencing elk recruitment across ecotypes in the Western United States. Journal of Wildlife Management, 2018, 82, 698-710.	1.8	30
18	Increased scientific rigor will improve reliability of research and effectiveness of management. Journal of Wildlife Management, 2018, 82, 485-494.	1.8	24

MICHAEL S MITCHELL

#	Article	IF	CITATIONS
19	Attributes of seasonal home range influence choice of migratory strategy in white-tailed deer. Journal of Mammalogy, 2018, 99, 89-96.	1.3	3
20	Distinguishing values from science in decision making: Setting harvest quotas for mountain lions in Montana. Wildlife Society Bulletin, 2018, 42, 13-21.	1.6	15
21	Testing <i>a priori</i> hypotheses improves the reliability of wildlife research. Journal of Wildlife Management, 2018, 82, 1568-1571.	1.8	3
22	Harvest and group effects on pup survival in a cooperative breeder. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170580.	2.6	18
23	Effects of breeder turnover and harvest on group composition and recruitment in a social carnivore. Journal of Animal Ecology, 2017, 86, 1094-1101.	2.8	15
24	Behavioral connectivity among bighorn sheep suggests potential for disease spread. Journal of Wildlife Management, 2017, 81, 38-45.	1.8	16
25	Structured decision making for managing pneumonia epizootics in bighorn sheep. Journal of Wildlife Management, 2016, 80, 957-969.	1.8	14
26	Dog days of summer: influences on decision of wolves to move pups. Journal of Mammalogy, 2016, 97, 1282-1287.	1.3	13
27	Annual elk calf survival in a multiple carnivore system. Journal of Wildlife Management, 2016, 80, 1345-1359.	1.8	34
28	Individual, Group, and Environmental Influences on Helping Behavior in a Social Carnivore. Ethology, 2016, 122, 963-972.	1.1	21
29	Linking resource selection and mortality modeling for population estimation of mountain lions in Montana. Ecological Modelling, 2015, 312, 11-25.	2.5	23
30	Modeling risk of pneumonia epizootics in bighorn sheep. Journal of Wildlife Management, 2015, 79, 195-210.	1.8	19
31	Monitoring gray wolf populations using multiple survey methods. Journal of Wildlife Management, 2014, 78, 335-346.	1.8	42
32	A test of the compensatory mortality hypothesis in mountain lions: A management experiment in West entral Montana. Journal of Wildlife Management, 2014, 78, 791-807.	1.8	40
33	Using structured decision making to manage disease risk for Montana wildlife. Wildlife Society Bulletin, 2013, 37, 107-114.	1.6	8
34	No trespassing: using a biofence to manipulate wolf movements. Wildlife Research, 2013, 40, 207.	1.4	31
35	Estimating occupancy and predicting numbers of gray wolf packs in Montana using hunter surveys. Journal of Wildlife Management, 2013, 77, 1280-1289.	1.8	34
36	Human-caused mortality influences spatial population dynamics: Pumas in landscapes with varying mortality risks. Biological Conservation, 2013, 159, 230-239.	4.1	50

MICHAEL S MITCHELL

#	Article	IF	CITATIONS
37	Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data. PLoS ONE, 2013, 8, e65808.	2.5	86
38	Homesite attendance based on sex, breeding status, and number of helpers in gray wolf packs. Journal of Mammalogy, 2012, 93, 1001-1005.	1.3	24
39	Anthropogenic mortality, intraspecific competition, and prey availability influence territory sizes of wolves in Montana. Journal of Mammalogy, 2012, 93, 722-731.	1.3	36
40	What is a home range?. Journal of Mammalogy, 2012, 93, 948-958.	1.3	262
41	Foraging optimally for home ranges. Journal of Mammalogy, 2012, 93, 917-928.	1.3	49
42	Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human aused mortality. Journal of Wildlife Management, 2012, 76, 108-118.	1.8	41
43	Territory occupancy by common loons in response to disturbance, habitat, and intraspecific relationships. Journal of Wildlife Management, 2012, 76, 645-651.	1.8	7
44	Reproduction in a population of wild pigs (<i>Sus scrofa</i>) subjected to lethal control. Journal of Wildlife Management, 2012, 76, 1235-1240.	1.8	14
45	Carnivore habitat ecology: integrating theory and application. , 2012, , 218-255.		16
46	An automated device for provoking and capturing wildlife calls. Wildlife Society Bulletin, 2011, 35, 498-503.	1.6	12
47	Hair of the dog: Obtaining samples from coyotes and wolves noninvasively. Wildlife Society Bulletin, 2011, 35, 105-111.	1.6	14
48	Surveying Predicted Rendezvous Sites to Monitor Gray Wolf Populations. Journal of Wildlife Management, 2010, 74, 1043-1049.	1.8	55
49	Temporal validation of an estimator for successful breeding pairs of wolves Canis lupus in the U.S. northern Rocky Mountains. Wildlife Biology, 2010, 16, 101-106.	1.4	2
50	Estimate of herpetofauna depredation by a population of wild pigs. Journal of Mammalogy, 2010, 91, 519-524.	1.3	56
51	The home-range concept: are traditional estimators still relevant with modern telemetry technology?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2221-2231.	4.0	389
52	Internal Validation of Predictive Logistic Regression Models for Decisionâ€Making in Wildlife Management. Wildlife Biology, 2009, 15, 352-369.	1.4	16
53	Contributions of vital rates to growth of a protected population of American black bears. Ursus, 2009, 20, 77-84.	0.5	23
54	Effect of experimental manipulation on survival and recruitment of feral pigs. Wildlife Research, 2009, 36, 185.	1.4	42

MICHAEL S MITCHELL

#	Article	IF	CITATIONS
55	Estimation of Successful Breeding Pairs for Wolves in the Northern Rocky Mountains, USA. Journal of Wildlife Management, 2008, 72, 881-891.	1.8	18
56	Estimated home ranges can misrepresent habitat relationships on patchy landscapes. Ecological Modelling, 2008, 216, 409-414.	2.5	21
57	Projected long-term response of Southeastern birds to forest management. Forest Ecology and Management, 2008, 256, 1884-1896.	3.2	18
58	Change-in-ratio density estimator for feral pigs is less biased than closed mark - recapture estimates. Wildlife Research, 2008, 35, 695.	1.4	20
59	Three Axes of Ecological Studies. , 2007, , 174-194.		5
60	Selection of Den Sites by Black Bears in the Southern Appalachians. Journal of Mammalogy, 2007, 88, 1062-1073.	1.3	16
61	Effects of Roads on Habitat Quality for Bears in the Southern Appalachians: a Long-Term Study. Journal of Mammalogy, 2007, 88, 1050-1061.	1.3	37
62	Linking resources with demography to understand resource limitation for bears. Journal of Applied Ecology, 2007, 44, 1166-1175.	4.0	25
63	Optimal use of resources structures home ranges and spatial distribution of black bears. Animal Behaviour, 2007, 74, 219-230.	1.9	69
64	Relationships between avian richness and landscape structure at multiple scales using multiple landscapes. Forest Ecology and Management, 2006, 221, 155-169.	3.2	73
65	A method for landscape analysis of forestry guidelines using bird habitat models and the Habplan harvest scheduler. Forest Ecology and Management, 2006, 232, 56-67.	3.2	17
66	Spatio-temporal availability of soft mast in clearcuts in the Southern Appalachians. Forest Ecology and Management, 2006, 237, 103-114.	3.2	20
67	LONG-TERM ANALYSIS OF SURVIVAL, FERTILITY, AND POPULATION GROWTH RATE OF BLACK BEARS IN NORTH CAROLINA. Journal of Mammalogy, 2005, 86, 1029-1035.	1.3	12
68	A mechanistic home range model for optimal use of spatially distributed resources. Ecological Modelling, 2004, 177, 209-232.	2.5	178
69	Response of Black Bears to Forest Management in the Southern Appalachian Mountains. Journal of Wildlife Management, 2003, 67, 692.	1.8	34
70	USING LANDSCAPE-LEVEL DATA TO PREDICT THE DISTRIBUTION OF BIRDS ON A MANAGED FOREST: EFFECTS OF SCALE. , 2001, 11, 1692-1708.		125
71	Topographical constraints and home range quality. Ecography, 1998, 21, 337-341.	4.5	29