
Paul J A Kenis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123963/publications.pdf Version: 2024-02-01

DALLI LA KENIS

#	Article	IF	CITATIONS
1	Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nature Catalysis, 2021, 4, 20-27.	16.1	313
2	Potential Dependence of the Local pH in a CO ₂ Reduction Electrolyzer. ACS Catalysis, 2021, 11, 255-263.	5.5	77
3	Accelerated screening of colloidal nanocrystals using artificial neural network-assisted autonomous flow reactor technology. Nanoscale, 2021, 13, 17028-17039.	2.8	18
4	Investigation of Electrolyte-Dependent Carbonate Formation on Gas Diffusion Electrodes for CO ₂ Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 15132-15142.	4.0	81
5	Engineering Silverâ€Enriched Copper Coreâ€Shell Electrocatalysts to Enhance the Production of Ethylene and C ₂₊ Chemicals from Carbon Dioxide at Low Cell Potentials. Advanced Functional Materials, 2021, 31, 2101668.	7.8	36
6	Binder-Focused Approaches to Improve the Stability of Cathodes for CO ₂ Electroreduction. ACS Applied Energy Materials, 2021, 4, 5175-5186.	2.5	53
7	Decreasing the Energy Consumption of the CO ₂ Electrolysis Process Using a Magnetic Field. ACS Energy Letters, 2021, 6, 2427-2433.	8.8	24
8	Efficient Aqueous Electroreduction of CO ₂ to Formate at Low Overpotential on Indium Tin Oxide Nanocrystals. Chemistry of Materials, 2021, 33, 7675-7685.	3.2	16
9	Exploring multivalent cations-based electrolytes for CO2 electroreduction. Electrochimica Acta, 2021, 394, 139055.	2.6	20
10	Durable Cathodes and Electrolyzers for the Efficient Aqueous Electrochemical Reduction of CO ₂ . ChemSusChem, 2020, 13, 855-875.	3.6	124
11	Controlling Speciation during CO ₂ Reduction on Cu-Alloy Electrodes. ACS Catalysis, 2020, 10, 672-682.	5.5	107
12	Selective Electrooxidation of Glycerol to Formic Acid over Carbon Supported Ni _{1–<i>x</i>} M _{<i>x</i>} (M = Bi, Pd, and Au) Nanocatalysts and Coelectrolysis of CO ₂ . ACS Applied Energy Materials, 2020, 3, 8725-8738.	2.5	63
13	Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Scientific Reports, 2020, 10, 13320.	1.6	8
14	Towards accelerated durability testing protocols for CO ₂ electrolysis. Journal of Materials Chemistry A, 2020, 8, 22557-22571.	5.2	24
15	Electrochemistry for a Sustainable World. Electrochemical Society Interface, 2020, 29, 41-42.	0.3	11
16	Ring-Opening Polymerization of Cyclic Esters in an Aqueous Dispersion. Macromolecules, 2020, 53, 7767-7773.	2.2	8
17	Unraveling the Origin of Interfacial Oxidation of InP-Based Quantum Dots: Implications for Bioimaging and Optoelectronics. ACS Applied Nano Materials, 2020, 3, 12325-12333.	2.4	23
18	Mechanistic Insights into Size-Focused Growth of Indium Phosphide Nanocrystals in the Presence of Trace Water. Chemistry of Materials, 2020, 32, 3577-3584.	3.2	17

#	Article	IF	CITATIONS
19	System Design Rules for Intensifying the Electrochemical Reduction of CO ₂ to CO on Ag Nanoparticles. ChemElectroChem, 2020, 7, 2001-2011.	1.7	90
20	Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane. Journal of Electroanalytical Chemistry, 2020, 875, 113862.	1.9	32
21	Carbon-Based Electrodes and Catalysts for the Electroreduction of Carbon Dioxide (CO2) to Value-Added Chemicals. Nanostructure Science and Technology, 2019, , 219-251.	0.1	7
22	Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. Lab on A Chip, 2019, 19, 2598-2609.	3.1	11
23	Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nature Energy, 2019, 4, 466-474.	19.8	458
24	Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism. ACS Applied Materials & Interfaces, 2018, 10, 10480-10489.	4.0	15
25	X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. Lab on A Chip, 2018, 18, 944-954.	3.1	19
26	Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO ₂ to Ethylene and Ethanol. Journal of the American Chemical Society, 2018, 140, 5791-5797.	6.6	599
27	Insights into the Low Overpotential Electroreduction of CO ₂ to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Letters, 2018, 3, 193-198.	8.8	384
28	High efficiency electrochemical reduction of CO ₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 10313-10319.	5.2	92
29	A Millifluidic Reactor System for Multistep Continuous Synthesis of InP/ZnSeS Nanoparticles. ChemNanoMat, 2018, 4, 943-953.	1.5	20
30	Probability of Nucleation in a Metastable Zone: Induction Supersaturation and Implications. Crystal Growth and Design, 2017, 17, 1132-1145.	1.4	21
31	Elasticity in Macrophage‣ynthesized Biocrystals. Angewandte Chemie, 2017, 129, 1841-1845.	1.6	17
32	Elasticity in Macrophageâ€ 5 ynthesized Biocrystals. Angewandte Chemie - International Edition, 2017, 56, 1815-1819.	7.2	51
33	Continuous Flow Synthesis of Anisotropic Cadmium Selenide and Zinc Selenide Nanoparticles. ChemNanoMat, 2017, 3, 204-211.	1.5	16
34	"Click Chip―Conjugation of Bifunctional Chelators to Biomolecules. Bioconjugate Chemistry, 2017, 28, 986-994.	1.8	5
35	The Q-Cycle Mechanism of the <i>bc</i> ₁ Complex: A Biologist's Perspective on Atomistic Studies. Journal of Physical Chemistry B, 2017, 121, 3701-3717.	1.2	28
36	Chemical and mechanical modulation of polymeric micelle assembly. Nanoscale, 2017, 9, 5194-5204.	2.8	13

#	Article	IF	CITATIONS
37	X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization. Biomicrofluidics, 2017, 11, 024118.	1.2	7
38	Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO ₂ Reduction Catalysis. ACS Catalysis, 2017, 7, 3313-3321.	5.5	224
39	Carbon Foam Decorated with Silver Nanoparticles for Electrochemical CO ₂ Conversion. Energy Technology, 2017, 5, 861-863.	1.8	37
40	Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns. Journal of the American Chemical Society, 2017, 139, 47-50.	6.6	632
41	Gold Nanoparticles on Polymerâ€Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO ₂ . ChemPhysChem, 2017, 18, 3274-3279.	1.0	57
42	Probability of Nucleation in a Metastable Zone: Cooling Crystallization and Polythermal Method. Crystal Growth and Design, 2017, 17, 5823-5837.	1.4	6
43	Nonâ€Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling. ChemSusChem, 2017, 10, 4198-4206.	3.6	7
44	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093.	1.0	22
45	Design considerations for open-well microfluidic platforms for hypoxic cell studies. Biomicrofluidics, 2017, 11, 054116.	1.2	13
46	A Nitrogenâ€Ðoped Carbon Catalyst for Electrochemical CO ₂ Conversion to CO with High Selectivity and Current Density. ChemSusChem, 2017, 10, 1094-1099.	3.6	109
47	Enhanced emission of quantum dots embedded within the high-index dielectric regions of photonic crystal slabs. Applied Physics Letters, 2016, 108, .	1.5	4
48	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	5.8	505
49	Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. Journal of Power Sources, 2016, 312, 192-198.	4.0	177
50	Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. Journal of Materials Chemistry A, 2016, 4, 8573-8578.	5.2	166
51	A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm, 2016, 18, 7722-7727.	1.3	19
52	A Grossâ€Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO ₂ . ChemSusChem, 2016, 9, 1972-1979.	3.6	485
53	Greenhouse Gas Emissions, Energy Efficiency, and Cost of Synthetic Fuel Production Using Electrochemical CO ₂ Conversion and the Fischer–Tropsch Process. Energy & Fuels, 2016, 30, 5980-5989.	2.5	90
54	The effect of electrolyte composition on the electroreduction of CO ₂ to CO on Ag based gas diffusion electrodes. Physical Chemistry Chemical Physics, 2016, 18, 7075-7084.	1.3	367

#	Article	IF	CITATIONS
55	Solvent compatible microfluidic platforms for pharmaceutical solid form screening. RSC Advances, 2016, 6, 13286-13296.	1.7	13
56	Microfluidic Preparation of a ⁸⁹ Zr-Labeled Trastuzumab Single-Patient Dose. Journal of Nuclear Medicine, 2016, 57, 747-752.	2.8	16
57	Design, fabrication, and characterization of a proposed microchannel water electrolyzer. Journal of Power Sources, 2016, 307, 122-128.	4.0	13
58	Comprehensive energy analysis of a photovoltaic thermal water electrolyzer. Applied Energy, 2016, 164, 294-302.	5.1	36
59	One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources, 2016, 301, 219-228.	4.0	399
60	Insight into the electrochemical reduction of CO2 on gold via surface-enhanced Raman spectroscopy and N-containing additives. Journal of Solid State Electrochemistry, 2016, 20, 1149-1154.	1.2	12
61	Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1714-1717.	0.2	1
62	A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Advances, 2015, 5, 35211-35223.	1.7	42
63	Crystallization Optimization of Pharmaceutical Solid Forms with X-ray Compatible Microfluidic Platforms. Crystal Growth and Design, 2015, 15, 1201-1209.	1.4	29
64	Chemical Analysis of Drug Biocrystals: A Role for Counterion Transport Pathways in Intracellular Drug Disposition. Molecular Pharmaceutics, 2015, 12, 2528-2536.	2.3	38
65	Antisolvent Crystallization and Polymorph Screening of Glycine in Microfluidic Channels Using Hydrodynamic Focusing. Crystal Growth and Design, 2015, 15, 3299-3306.	1.4	35
66	A Method of Cryoprotection for Protein Crystallography by Using a Microfluidic Chip and Its Application for in Situ X-ray Diffraction Measurements. Analytical Chemistry, 2015, 87, 4194-4200.	3.2	20
67	Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochimica Acta, 2015, 166, 271-276.	2.6	169
68	Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals. Applied Optics, 2015, 54, 2302.	0.9	6
69	Crystallization and characterization of cocrystals of piroxicam and 2,5-dihydroxybenzoic acid. CrystEngComm, 2015, 17, 5299-5306.	1.3	13
70	Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III. American Journal of Physiology - Cell Physiology, 2015, 309, C81-C91.	2.1	27
71	High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals. Nanoscale, 2015, 7, 15895-15903.	2.8	36
72	Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 823-830.	0.4	29

#	Article	IF	CITATIONS
73	Modeling and Experimental Validation of Electrochemical Reduction of CO ₂ to CO in a Microfluidic Cell. Journal of the Electrochemical Society, 2015, 162, F23-F32.	1.3	68
74	Development of a microfluidic "click chip―incorporating an immobilized Cu(<scp>i</scp>) catalyst. RSC Advances, 2015, 5, 6142-6150.	1.7	11
75	Region Specific Enhancement of Quantum Dot Emission Using Interleaved Two-dimensional Photonic Crystals. , 2015, , .		Ο
76	Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Computer Aided Chemical Engineering, 2014, , 639-644.	0.3	3
77	<i>In situ</i> serial Laue diffraction on a microfluidic crystallization device. Journal of Applied Crystallography, 2014, 47, 1975-1982.	1.9	29
78	Efficient Electrochemical Flow System with Improved Anode for the Conversion of CO ₂ to CO. Journal of the Electrochemical Society, 2014, 161, F1124-F1131.	1.3	74
79	Methods to study the tumor microenvironment under controlled oxygen conditions. Trends in Biotechnology, 2014, 32, 556-563.	4.9	90
80	Featured Article: Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise. Experimental Biology and Medicine, 2014, 239, 394-403.	1.1	7
81	Microfluidic Generation of Gradient Hydrogels to Modulate Hematopoietic Stem Cell Culture Environment. Advanced Healthcare Materials, 2014, 3, 449-458.	3.9	94
82	Silver Supported on Titania as an Active Catalyst for Electrochemical Carbon Dioxide Reduction. ChemSusChem, 2014, 7, 866-874.	3.6	189
83	Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling. Biomicrofluidics, 2014, 8, 044104.	1.2	21
84	Control of pressure-driven components in integrated microfluidic devices using an on-chip electrostatic microvalve. RSC Advances, 2014, 4, 51593-51602.	1.7	14
85	X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination. Crystal Growth and Design, 2014, 14, 4886-4890.	1.4	29
86	A three-dimensional numerical model of a micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. Journal of Power Sources, 2014, 269, 542-549.	4.0	14
87	Electrochemical Reduction of Carbon Dioxide on Cu/CuO Core/Shell Catalysts. ChemElectroChem, 2014, 1, 1577-1582.	1.7	39
88	Triazine-Based Tool Box for Developing Peptidic PET Imaging Probes: Syntheses, Microfluidic Radiolabeling, and Structure–Activity Evaluation. Bioconjugate Chemistry, 2014, 25, 761-772.	1.8	25
89	Thiolene and SIFEL-based microfluidic platforms for liquid–liquid extraction. Sensors and Actuators B: Chemical, 2014, 190, 634-644.	4.0	30
90	Oscillatory Behavior of Neutrophils under Opposing Chemoattractant Gradients Supports a Winner-Take-All Mechanism. PLoS ONE, 2014, 9, e85726.	1.1	24

#	Article	IF	CITATIONS
91	A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on A Chip, 2013, 13, 3183.	3.1	40
92	Tailoring electrode hydrophobicity to improve anode performance in alkaline media. Journal of Power Sources, 2013, 242, 581-588.	4.0	7
93	A monolithic poly(dimethylsiloxane) electrostatic actuator for controlling integrated pneumatic microsystems. Sensors and Actuators A: Physical, 2013, 196, 22-29.	2.0	7
94	A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosensors and Bioelectronics, 2013, 49, 118-125.	5.3	122
95	Transient light-induced intracellular oxidation revealed by redox biosensor. Biochemical and Biophysical Research Communications, 2013, 439, 517-521.	1.0	8
96	An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases. Analyst, The, 2013, 138, 5384.	1.7	25
97	Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases. Biophysical Journal, 2013, 105, 1848-1859.	0.2	9
98	The Effects of Catalyst Layer Deposition Methodology on Electrode Performance. Advanced Energy Materials, 2013, 3, 589-599.	10.2	183
99	Cellâ€Laden Hydrogels in Integrated Microfluidic Devices for Longâ€Term Cell Culture and Tubulogenesis Assays. Small, 2013, 9, 3076-3081.	5.2	4
100	Normally-Closed Electrostatic Microvalve Fabricated Using Exclusively Soft-Lithographic Techniques and Operated With Portable Electronics. Journal of Microelectromechanical Systems, 2013, 22, 1251-1253.	1.7	7
101	Effect of Cations on the Electrochemical Conversion of CO ₂ to CO. Journal of the Electrochemical Society, 2013, 160, F69-F74.	1.3	289
102	Manufacturing all-polymer laminar flow-based fuel cells. Journal of Power Sources, 2013, 240, 486-493.	4.0	25
103	Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO ₂ Fixation. Chemical Reviews, 2013, 113, 6621-6658.	23.0	1,786
104	In-situ measurement of ethanol tolerance in an operating fuel cell. International Journal of Hydrogen Energy, 2013, 38, 8980-8991.	3.8	5
105	A Microfluidic Platform for Evaporation-based Salt Screening of Pharmaceutical Parent compounds. Lab on A Chip, 2013, 13, 1708.	3.1	20
106	Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2013, 2, 191-199.	3.8	645
107	Microfluidic radiolabeling of biomolecules with PET radiometals. Nuclear Medicine and Biology, 2013, 40, 42-51.	0.3	43
108	Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis. Journal of Physical Chemistry C, 2013, 117, 1627-1632.	1.5	369

#	Article	IF	CITATIONS
109	Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Molecular Biology of the Cell, 2013, 24, 3369-3380.	0.9	75
110	Using macromolecular-crystallography beamline and microfluidic platform for small-angle diffraction studies of lipidic matrices for membrane-protein crystallization. Journal of Physics: Conference Series, 2013, 425, 012013.	0.3	5
111	Combining Structural and Electrochemical Analysis of Electrodes Using Micro-Computed Tomography and a Microfluidic Fuel Cell. Journal of the Electrochemical Society, 2012, 159, B292-B298.	1.3	39
112	Quantitative Analysis of Single-Electrode Plots to Understand In-Situ Behavior of Individual Electrodes. Journal of the Electrochemical Society, 2012, 159, B761-B769.	1.3	15
113	Contaminant Removal from Oxygen Production Systems for In Situ Resource Utilization. , 2012, , .		1
114	Nitrogen-Based Catalysts for the Electrochemical Reduction of CO ₂ to CO. Journal of the American Chemical Society, 2012, 134, 19520-19523.	6.6	168
115	Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment. Experimental Biology and Medicine, 2012, 237, 652-662.	1.1	24
116	Fabrication of X-ray compatible microfluidic platforms for protein crystallization. Sensors and Actuators B: Chemical, 2012, 174, 1-9.	4.0	59
117	Microfluidic approach to polymorph screening through antisolvent crystallization. CrystEngComm, 2012, 14, 2404.	1.3	31
118	Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics. Lab on A Chip, 2012, 12, 1078.	3.1	31
119	Identification of nucleation rates in droplet-based microfluidic systems. , 2012, , .		Ο
120	Design rules for electrode arrangement in an air-breathing alkaline direct methanol laminar flow fuel cell. Journal of Power Sources, 2012, 218, 28-33.	4.0	42
121	Identification of nucleation rates in droplet-based microfluidic systems. Chemical Engineering Science, 2012, 77, 235-241.	1.9	26
122	Microfluidic Approach to Cocrystal Screening of Pharmaceutical Parent Compounds. Crystal Growth and Design, 2012, 12, 6023-6034.	1.4	36
123	Analysis of Pt/C electrode performance in a flowing-electrolyte alkaline fuel cell. International Journal of Hydrogen Energy, 2012, 37, 2559-2570.	3.8	45
124	Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow. Integrative Biology (United Kingdom), 2011, 3, 208-217.	0.6	12
125	lonic Liquid–Mediated Selective Conversion of CO ₂ to CO at Low Overpotentials. Science, 2011, 334, 643-644.	6.0	1,293
126	Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab on A Chip, 2011, 11, 1916.	3.1	27

#	Article	IF	CITATIONS
127	A microfluidic platform for pharmaceutical salt screening. Lab on A Chip, 2011, 11, 3829.	3.1	38
128	Design considerations for elastomeric normally closed microfluidic valves. Sensors and Actuators B: Chemical, 2011, 160, 1216-1223.	4.0	53
129	Carbonate resilience of flowing electrolyte-based alkaline fuel cells. Journal of Power Sources, 2011, 196, 1762-1768.	4.0	81
130	Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. Journal of Power Sources, 2011, 196, 4638-4645.	4.0	70
131	Two-layer multiplexed peristaltic pumps for high-density integrated microfluidics. Sensors and Actuators B: Chemical, 2011, 151, 384-393.	4.0	17
132	The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge. Journal of Cell Science, 2011, 124, 2153-2164.	1.2	23
133	Optofluidic microchip with VCSELs and edge emitting laser sources. , 2011, , .		0
134	Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments. Experimental Biology and Medicine, 2011, 236, 681-691.	1.1	35
135	On the performance of membraneless laminar flow-based fuel cells. Journal of Power Sources, 2010, 195, 3569-3578.	4.0	154
136	Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells. Journal of Power Sources, 2010, 195, 3523-3528.	4.0	82
137	Microtopographically patterned surfaces promote the alignment of tenocytes and extracellular collagen. Acta Biomaterialia, 2010, 6, 2580-2589.	4.1	70
138	Investigation of Pt, Pt[sub 3]Co, and Pt[sub 3]Co/Mo Cathodes for the ORR in a Microfluidic H[sub 2]/O[sub 2] Fuel Cell. Journal of the Electrochemical Society, 2010, 157, B837.	1.3	23
139	Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH. Electrochemical and Solid-State Letters, 2010, 13, B109.	2.2	289
140	Prospects of CO ₂ Utilization via Direct Heterogeneous Electrochemical Reduction. Journal of Physical Chemistry Letters, 2010, 1, 3451-3458.	2.1	1,207
141	DNA-Mediated Control of Metal Nanoparticle Shape: One-Pot Synthesis and Cellular Uptake of Highly Stable and Functional Gold Nanoflowers. Nano Letters, 2010, 10, 1886-1891.	4.5	278
142	Determination of the Phase Diagram for Soluble and Membrane Proteins. Journal of Physical Chemistry B, 2010, 114, 4432-4441.	1.2	29
143	A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems. Crystal Growth and Design, 2010, 10, 2515-2521.	1.4	114
144	A Carbon-Supported Copper Complex of 3,5-Diamino-1,2,4-triazole as a Cathode Catalyst for Alkaline Fuel Cell Applications. Journal of the American Chemical Society, 2010, 132, 12185-12187.	6.6	81

#	Article	IF	CITATIONS
145	Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine. Lab on A Chip, 2010, 10, 3387.	3.1	38
146	Design rules for pumping and metering of highly viscous fluids in microfluidics. Lab on A Chip, 2010, 10, 3112.	3.1	15
147	Optofluidic Microchip With Integrated 780-nm VCSEL Arrays for Biomedical and Chemical Sensing. , 2010, , .		0
148	Microfluidic Fuel Cells as Microscale Power Sources and Analytical Platforms. , 2009, , .		2
149	Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform. Journal of the Electrochemical Society, 2009, 156, B565.	1.3	62
150	Multiplexed electrical sensor arrays in microfluidic networks. Sensors and Actuators B: Chemical, 2009, 136, 350-358.	4.0	23
151	Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells. Electrochimica Acta, 2009, 54, 4384-4388.	2.6	73
152	Investigation of fuel and media flexible laminar flow-based fuel cells. Electrochimica Acta, 2009, 54, 7099-7105.	2.6	86
153	Electronic Properties of a Monolayerâ^ Electrolyte Interface Obtained from Mechanistic Impedance Analysis. Journal of Physical Chemistry C, 2009, 113, 9375-9391.	1.5	13
154	Cadherin and Integrin Regulation of Epithelial Cell Migration. Langmuir, 2009, 25, 10092-10099.	1.6	17
155	Mechanisms of Charge Transport through Monolayer-Modified Polycrystalline Gold Electrodes in the Absence of Redox-Active Moieties. Journal of Physical Chemistry C, 2009, 113, 4687-4705.	1.5	9
156	Microfluidic chip for combinatorial mixing and screening of assays. Lab on A Chip, 2009, 9, 1676.	3.1	74
157	Microfluidic Generation of Lipidic Mesophases for Membrane Protein Crystallization. Crystal Growth and Design, 2009, 9, 2566-2569.	1.4	47
158	Vertical-cavity surface-emitting lasers for optical sensing in microfluidic microsystems. Proceedings of SPIE, 2009, , .	0.8	1
159	Integration of 780 and 850-nm Vertical-Cavity Surface-Emitting Lasers into a Micro-Fluidic Microsystem. , 2009, , .		0
160	Engineering Redox-Sensitive Linkers for Genetically Encoded FRET-Based Biosensors. Experimental Biology and Medicine, 2008, 233, 238-248.	1.1	55
161	Methanol Oxidation on Pt(111)/Ru in Alkaline Media. ECS Transactions, 2007, 11, 1333-1346.	0.3	0
162	The Role of Surface Defects in CO Oxidation, Methanol Oxidation, and Oxygen Reduction on Pt(111). Journal of the Electrochemical Society, 2007, 154, F238.	1.3	45

#	Article	IF	CITATIONS
163	Vapor Feed Direct Methanol Fuel Cell with Flowing Electrolyte. ECS Transactions, 2007, 11, 1419-1424.	0.3	3
164	Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte. Langmuir, 2007, 23, 6871-6874.	1.6	79
165	Microfluidic Flow-Flash:Â Method for Investigating Protein Dynamics. Analytical Chemistry, 2007, 79, 122-128.	3.2	20
166	Generalized Phase Behavior of Small Molecules and Nanoparticles. Journal of Physical Chemistry B, 2007, 111, 12494-12499.	1.2	12
167	Double Transfer Printing of Small Volumes of Liquids. Langmuir, 2007, 23, 2906-2914.	1.6	21
168	Patterning by Etching at the Nanoscale (PENs) on Si(111) through the Controlled Etching of PDMS. Chemistry of Materials, 2007, 19, 2903-2909.	3.2	7
169	A Kinetic Model To Simulate Protein Crystal Growth in an Evaporation-Based Crystallization Platform. Langmuir, 2007, 23, 4516-4522.	1.6	22
170	Metastable States of Small-Molecule Solutions. Journal of Physical Chemistry B, 2007, 111, 14121-14129.	1.2	20
171	Depletion Boundary Layer Engineering in Electrochemical Microreactors. ECS Meeting Abstracts, 2007,	0.0	Ο
172	Fabrication of Ceramic Microscale Structures. Journal of the American Ceramic Society, 2007, 90, 2779-2783.	1.9	23
173	Methanol Dehydrogenation and Oxidation on Pt(111) in Alkaline Solutions. Langmuir, 2006, 22, 10457-10464.	1.6	63
174	Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane. Lab on A Chip, 2006, 6, 1328.	3.1	45
175	Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab on A Chip, 2006, 6, 1516.	3.1	123
176	Mechanism of CO Oxidation on Pt(111) in Alkaline Media. Journal of Physical Chemistry B, 2006, 110, 9545-9555.	1.2	164
177	Direct Growth of Î ³ -Glycine from Neutral Aqueous Solutions by Slow, Evaporation-Driven Crystallization. Crystal Growth and Design, 2006, 6, 1746-1749.	1.4	90
178	Cross Metathesis on Olefin-Terminated Monolayers on Si(111) Using the Grubbs' Catalyst. Langmuir, 2006, 22, 2146-2155.	1.6	32
179	Determination of Critical Supersaturation from Microdroplet Evaporation Experiments. Crystal Growth and Design, 2006, 6, 1175-1180.	1.4	49
180	Cell Migration and Polarity on Microfabricated Gradients of Extracellular Matrix Proteins. Langmuir, 2006, 22, 4250-4258.	1.6	116

#	Article	IF	CITATIONS
181	Passive direct formic acid microfabricated fuel cells. Journal of Power Sources, 2006, 160, 1058-1064.	4.0	71
182	Ceramic microreactors for on-site hydrogen production. Journal of Catalysis, 2006, 241, 235-242.	3.1	78
183	In Situ Deposition and Patterning of Single-Walled Carbon Nanotubes by Laminar Flow and Controlled Flocculation in Microfluidic Channels. Angewandte Chemie - International Edition, 2006, 45, 581-585.	7.2	78
184	Integrated Electrical Sensor Arrays in Microfluidic Networks. ECS Transactions, 2006, 3, 427-435.	0.3	1
185	Materials for Micro- and Nanofluidics. MRS Bulletin, 2006, 31, 87-94.	1.7	19
186	Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte. Electrochemical and Solid-State Letters, 2006, 9, A252.	2.2	103
187	Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid. Sensors and Actuators B: Chemical, 2005, 107, 882-891.	4.0	106
188	Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochimica Acta, 2005, 50, 4674-4682.	2.6	190
189	Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochimica Acta, 2005, 50, 5390-5398.	2.6	199
190	Twists and turns in the development and maintenance of the mammalian small intestine epithelium. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 58-71.	3.6	22
191	Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming. Advanced Functional Materials, 2005, 15, 1336-1342.	7.8	127
192	Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. Journal of Applied Crystallography, 2005, 38, 988-995.	1.9	50
193	Simple Methods for the Direct Assembly, Functionalization, and Patterning of Acid-Terminated Monolayers on Si(111). Langmuir, 2005, 21, 10537-10544.	1.6	65
194	Mild methods to assemble and pattern organic monolayers on hydrogen-terminated Si(111). Chemical Communications, 2005, , 3198.	2.2	19
195	Characterization of Limiting Factors in Laminar Flow-Based Membraneless Microfuel Cells. Electrochemical and Solid-State Letters, 2005, 8, A348.	2.2	108
196	Multilevel Microfluidics via Single-Exposure Photolithography. Journal of the American Chemical Society, 2005, 127, 7674-7675.	6.6	28
197	Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell. Journal of the American Chemical Society, 2005, 127, 16758-16759.	6.6	330
198	Regiospecific Control of Protein Expression in Cells Cultured on Two-Component Counter Gradients of Extracellular Matrix Proteins. Langmuir, 2005, 21, 3061-3068.	1.6	44

#	Article	IF	CITATIONS
199	Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide Cofactors for Biocatalysis. Journal of the American Chemical Society, 2005, 127, 10466-10467.	6.6	56
200	Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel. Lab on A Chip, 2005, 5, 1259.	3.1	44
201	Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12428-12433.	3.3	280
202	Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. Journal of Electroanalytical Chemistry, 2004, 568, 215-224.	1.9	159
203	Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004, 128, 54-60.	4.0	478
204	Solving Mazes Using Microfluidic Networks. Langmuir, 2003, 19, 4714-4722.	1.6	77
205	Membraneless Fuel Cell Based on Laminar Flow. , 2003, , 261.		6
206	Pressure-Driven Laminar Flow in Tangential Microchannels:Â an Elastomeric Microfluidic Switch. Analytical Chemistry, 2001, 73, 4682-4687.	3.2	94
207	Microfluidic Arrays of Fluidâ ``Fluid Diffusional Contacts as Detection Elements and Combinatorial Tools. Analytical Chemistry, 2001, 73, 5207-5213.	3.2	126
208	Fabrication and characterization of microscale sandwich beams. Journal of Materials Research, 2001, 16, 597-605.	1.2	15
209	Patterning Electro-osmotic Flow with Patterned Surface Charge. Physical Review Letters, 2000, 84, 3314-3317.	2.9	317
210	Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters, 2000, 76, 2376-2378.	1.5	478
211	Fabrication of Metallic Microstructures Using Exposed, Developed Silver Halide-Based Photographic Film. Analytical Chemistry, 2000, 72, 645-651.	3.2	30
212	Fabrication inside Microchannels Using Fluid Flow. Accounts of Chemical Research, 2000, 33, 841-847.	7.6	151
213	Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5545-5548.	3.3	507
214	Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science, 1999, 285, 83-85.	6.0	649
215	Supramolecular Materials: Molecular Packing of Tetranitrotetrapropoxycalix[4]arene in Highly Stable Films with Second-Order Nonlinear Optical Properties. Chemistry - A European Journal, 1998, 4, 1225-1234.	1.7	37
216	Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films of Tetranitrotetrapropoxycalix[4]arene. Langmuir, 1998, 14, 2801-2809.	1.6	14

#	Article	IF	CITATIONS
217	Second-Order Nonlinear Optical Properties of the Four Tetranitrotetrapropoxycalix[4]arene Conformers. Journal of the American Chemical Society, 1998, 120, 7875-7883.	6.6	64
218	Supramolecular Materials: Molecular Packing of Tetranitrotetrapropoxycalix[4]arene in Highly Stable Films with Second-Order Nonlinear Optical Properties. , 1998, 4, 1225.		1
219	Second-Order Nonlinear Optical Active Calix[4]arene Polyimides Suitable for Frequency Doubling in the UV Region. Chemistry of Materials, 1997, 9, 596-601.	3.2	21
220	Characterization of a [4Feâ€4S]â€Ferredoxin Model Based on a Concave Tetradentate Thiol Ligand System. Chemische Berichte, 1997, 130, 23-34.	0.2	8
221	Co-Electrolysis for Efficient Electroreduction of CO2 to Intermediates Fuels or Chemicals. , 0, , .		0