
Goran K Hansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11235561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation, Atherosclerosis, and Coronary Artery Disease. New England Journal of Medicine, 2005, 352, 1685-1695.	27.0	7,433
2	Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473, 317-325.	27.8	3,058
3	From Vulnerable Plaque to Vulnerable Patient. Circulation, 2003, 108, 1664-1672.	1.6	2,308
4	The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 2006, 6, 508-519.	22.7	1,890
5	The immune system in atherosclerosis. Nature Immunology, 2011, 12, 204-212.	14.5	1,825
6	Inflammation in Atherosclerosis. Journal of the American College of Cardiology, 2009, 54, 2129-2138.	2.8	1,738
7	Atherosclerosis. Nature Reviews Disease Primers, 2019, 5, 56.	30.5	1,601
8	From Vulnerable Plaque to Vulnerable Patient. Circulation, 2003, 108, 1772-1778.	1.6	1,562
9	Natural regulatory T cells control the development of atherosclerosis in mice. Nature Medicine, 2006, 12, 178-180.	30.7	936
10	Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis. Circulation Research, 2002, 91, 281-291.	4.5	905
11	INFLAMMATION AND ATHEROSCLEROSIS. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 297-329.	22.4	870
12	Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 1999, 145, 33-43.	0.8	862
13	The immunology of atherosclerosis. Nature Reviews Nephrology, 2017, 13, 368-380.	9.6	667
14	Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. Immunity, 2013, 38, 1092-1104.	14.3	556
15	Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. Journal of Clinical Investigation, 2002, 109, 745-753.	8.2	444
16	Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology, 2001, 38, 307-314.	2.8	413
17	Disruption of TGF-Î ² signaling in T cells accelerates atherosclerosis. Journal of Clinical Investigation, 2003, 112, 1342-1350.	8.2	374
18	Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovascular Research, 2003, 59, 234-240.	3.8	322

#	Article	IF	CITATIONS
19	Anti-inflammatory therapies for atherosclerosis. Nature Reviews Cardiology, 2015, 12, 199-211.	13.7	315
20	Expression of Neutrophil Gelatinase–Associated Lipocalin in Atherosclerosis and Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 136-142.	2.4	307
21	Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation, 2002, 105, 1158-61.	1.6	307
22	Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. Journal of Clinical Investigation, 2013, 123, 1323-1334.	8.2	304
23	Inflammation and Immunity in Diseases of the Arterial Tree. Circulation Research, 2015, 116, 307-311.	4.5	302
24	Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice. Molecular Medicine, 2003, 9, 10-17.	4.4	297
25	CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis. Journal of Experimental Medicine, 2004, 199, 417-422.	8.5	292
26	Production of the Long Pentraxin PTX3 in Advanced Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, e10-4.	2.4	273
27	Adaptive immunity and atherosclerosis. Clinical Immunology, 2010, 134, 33-46.	3.2	250
28	T Cells in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2421-2432.	2.4	227
29	Expression of 5-lipoxygenase and leukotriene A ₄ hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8161-8166.	7.1	222
30	NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. Journal of the American Heart Association, 2016, 5, .	3.7	220
31	Leukotriene B4 signaling through NF-ÂB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17501-17506.	7.1	219
32	Innate immunity, macrophage activation, and atherosclerosis. Immunological Reviews, 2007, 219, 187-203.	6.0	215
33	Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. Journal of Experimental Medicine, 2010, 207, 1081-1093.	8.5	212
34	Adaptive Response of T and B Cells in Atherosclerosis. Circulation Research, 2016, 118, 668-678.	4.5	209
35	CD137 Is Expressed in Human Atherosclerosis and Promotes Development of Plaque Inflammation in Hypercholesterolemic Mice. Circulation, 2008, 117, 1292-1301.	1.6	188
36	CXCL16/SR-PSOX Is an Interferon-γ–Regulated Chemokine and Scavenger Receptor Expressed in Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 750-755.	2.4	179

#	Article	IF	CITATIONS
37	Intranasal Immunization With an Apolipoprotein B-100 Fusion Protein Induces Antigen-Specific Regulatory T Cells and Reduces Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 946-952.	2.4	179
38	Immunotherapy With Tolerogenic Apolipoprotein B-100–Loaded Dendritic Cells Attenuates Atherosclerosis in Hypercholesterolemic Mice. Circulation, 2011, 123, 1083-1091.	1.6	175
39	Enhanced T-Cell Expression of RANK Ligand in Acute Coronary Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 857-863.	2.4	170
40	Accumulation of Foam Cells in Liver X Receptor-Deficient Mice. Circulation, 2002, 106, 1147-1153.	1.6	165
41	Dickkopf-1 Enhances Inflammatory Interaction Between Platelets and Endothelial Cells and Shows Increased Expression in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1228-1234.	2.4	162
42	Transforming Growth Factor–β Signaling in T Cells Promotes Stabilization of Atherosclerotic Plaques Through an Interleukin-17–Dependent Pathway. Science Translational Medicine, 2013, 5, 196ra100.	12.4	162
43	From Focal Lipid Storage to Systemic Inflammation. Journal of the American College of Cardiology, 2019, 74, 1594-1607.	2.8	158
44	Innate immune signals in atherosclerosis. Clinical Immunology, 2010, 134, 5-24.	3.2	153
45	Atherosclerosis—An immune disease. Atherosclerosis, 2009, 202, 2-10.	0.8	150
46	Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. European Heart Journal, 2009, 30, 2838-2844.	2.2	149
47	Adoptive Transfer of CD4 + T Cells Reactive to Modified Low-Density Lipoprotein Aggravates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 864-870.	2.4	138
48	Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Molecular Medicine, 2003, 9, 10-7.	4.4	136
49	Cell-mediated immunity in atherosclerosis. Current Opinion in Lipidology, 1997, 8, 301-311.	2.7	135
50	Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis, 1999, 145, 301-308.	0.8	135
51	Enhanced Expression of the Homeostatic Chemokines CCL19 and CCL21 in Clinical and Experimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 614-620.	2.4	134
52	Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. Journal of Clinical Investigation, 2013, 123, 179-188.	8.2	134
53	Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction*1. European Heart Journal, 2004, 25, 1447-1453.	2.2	132
54	Lesion Development and Response to Immunization Reveal a Complex Role for CD4 in Atherosclerosis. Circulation Research, 2005, 96, 427-434.	4.5	122

#	Article	IF	CITATIONS
55	Immunomodulation of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 18-28.	2.4	121
56	Prediction of Ischemic Events on the Basis of Transcriptomic and Genomic Profiling in Patients Undergoing Carotid Endarterectomy. Molecular Medicine, 2012, 18, 669-675.	4.4	118
57	Adhesion molecule expression on cerebrospinal fluid T lymphocytes: Evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Annals of Neurology, 1993, 34, 155-161.	5.3	114
58	Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thrombosis and Haemostasis, 2011, 106, 353-362.	3.4	112
59	The Discovery of Cellular Immunity in the Atherosclerotic Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1714-1717.	2.4	110
60	5-Lipoxygenase–Activating Protein. Circulation Research, 2007, 100, 946-949.	4.5	107
61	Inflammation and Atherosclerosis. Circulation, 2017, 136, 1875-1877.	1.6	107
62	ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. Circulation, 2018, 138, 1693-1705.	1.6	106
63	Chemokines and atherosclerosis. Annals of Medicine, 2004, 36, 98-118.	3.8	105
64	Association of Genetic Risk Variants With Expression of Proximal Genes Identifies Novel Susceptibility Genes for Cardiovascular Disease. Circulation: Cardiovascular Genetics, 2010, 3, 365-373.	5.1	103
65	Cellular immunity, low-density lipoprotein and atherosclerosis: Break of tolerance in the artery wall. Thrombosis and Haemostasis, 2011, 106, 779-786.	3.4	103
66	The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovascular Research, 2015, 105, 65-74.	3.8	102
67	Leukotriene receptors in atherosclerosis. Annals of Medicine, 2006, 38, 493-502.	3.8	99
68	MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions. Circulation Research, 2017, 120, 633-644.	4.5	98
69	The macrophage scavenger receptor type A directs modified proteins to antigen presentation. European Journal of Immunology, 1999, 29, 512-521.	2.9	95
70	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	22.7	95
71	Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovascular Research, 2013, 99, 364-373.	3.8	94
72	Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cellular and Molecular Life Sciences, 2016, 73, 901-922.	5.4	93

#	Article	IF	CITATIONS
73	Upregulation of the 5-Lipoxygenase Pathway in Human Aortic Valves Correlates With Severity of Stenosis and Leads to Leukotriene-Induced Effects on Valvular Myofibroblasts. Circulation, 2011, 123, 1316-1325.	1.6	92
74	The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. European Heart Journal, 2012, 33, 2025-2034.	2.2	92
75	Toll-Like Receptor 7 Protects From Atherosclerosis by Constraining "Inflammatory―Macrophage Activation. Circulation, 2012, 126, 952-962.	1.6	92
76	Lack of Complement Factor C3, but Not Factor B, Increases Hyperlipidemia and Atherosclerosis in Apolipoprotein Eâ^'/â^' Low-Density Lipoprotein Receptorâ^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1062-1067.	2.4	90
77	Kruppel-like Factor KLF10 Targets Transforming Growth Factor-β1 to Regulate CD4+CD25â^' T Cells and T Regulatory Cells. Journal of Biological Chemistry, 2009, 284, 24914-24924.	3.4	90
78	Aspirinâ€ŧriggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E ^{â^'/â^'} mice. British Journal of Pharmacology, 2017, 174, 4043-4054.	5.4	89
79	Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits. Experimental and Molecular Pathology, 1980, 33, 302-315.	2.1	84
80	Toll To Be Paid at the Gateway to the Vessel Wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1085-1087.	2.4	82
81	The use of network analyses for elucidating mechanisms in cardiovascular disease. Molecular BioSystems, 2010, 6, 289-304.	2.9	81
82	MHC Class Il–Restricted Antigen Presentation by Plasmacytoid Dendritic Cells Drives Proatherogenic T Cell Immunity. Circulation, 2014, 130, 1363-1373.	1.6	79
83	Inflammation and immune response in atherosclerosis. Current Atherosclerosis Reports, 1999, 1, 150-155.	4.8	77
84	Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoeâ^'/â^' mice. Cardiovascular Research, 2015, 106, 295-302.	3.8	77
85	Cytokine-Induced Expression of Nitric Oxide Synthase Results in Nitrosylation of Heme and Nonheme Iron Proteins in Vascular Smooth Muscle Cells. Experimental Cell Research, 1994, 214, 418-428.	2.6	76
86	Activation of Inducible Nitric Oxide Synthase/Nitric Oxide by Curli Fibers Leads to a Fall in Blood Pressure during SystemicEscherichia coliInfection in Mice. Journal of Infectious Diseases, 2001, 183, 612-619.	4.0	73
87	Human arterial smooth muscle cells in culture. Experimental Cell Research, 1988, 176, 319-335.	2.6	71
88	Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu ²⁺ and Zn ²⁺ . American Journal of Physiology - Cell Physiology, 2000, 278, C1116-C1125.	4.6	71
89	Immunology of ischemic vascular disease: plaque to attack. Trends in Immunology, 2005, 26, 550-556.	6.8	71
90	Expression of Interleukin-15 in Mouse and Human Atherosclerotic Lesions. American Journal of Pathology, 2001, 159, 417-423.	3.8	69

#	Article	IF	CITATIONS
91	Regulation of Immune Mechanisms in Atherosclerosis. Annals of the New York Academy of Sciences, 2001, 947, 157-166.	3.8	69
92	12- and 15-lipoxygenases in human carotid atherosclerotic lesions: Associations with cerebrovascular symptoms. Atherosclerosis, 2011, 215, 411-416.	0.8	68
93	Human arterial smooth muscle cells in culture: Inverse relationship between proliferation and expression of contractile proteins. In Vitro Cellular & Developmental Biology, 1989, 25, 511-520.	1.0	66
94	Sphingosine-1-Phosphate Analogue FTY720 Causes Lymphocyte Redistribution and Hypercholesterolemia in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2392-2399.	2.4	65
95	Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of <i>LMOD1, SYNPO2, PDLIM7, PLN</i> , and <i>SYNM</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1947-1961.	2.4	64
96	Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2030-8.	7.1	62
97	Omegaâ€3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB Journal, 2019, 33, 1536-1539.	0.5	61
98	Vaccination Against Atherosclerosis. Circulation, 2002, 106, 1599-1601.	1.6	59
99	Vaccination against atherosclerosis? Induction of atheroprotective immunity. Seminars in Immunopathology, 2009, 31, 95-101.	6.1	58
100	Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovascular Research, 2018, 114, 158-167.	3.8	57
101	Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circulation Research, 2017, 120, 1740-1753.	4.5	55
102	cDNA cloning and expression of inducible nitric oxide synthase from rat vascular smooth muscle cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 421-424.	2.4	53
103	Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in Apoeâ~'/â~' mice. Atherosclerosis, 2010, 209, 436-441.	0.8	53
104	Osteoprotegerin Promotes Fibrous Cap Formation in Atherosclerotic Lesions of ApoE-Deficient Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1478-1480.	2.4	51
105	Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovascular Research, 2010, 86, 29-36.	3.8	51
106	Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Scientific Reports, 2017, 7, 15655.	3.3	51
107	Germinal Center–Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation, 2019, 139, 2466-2482.	1.6	51
108	Immune Mechanisms in Atherogenesis. Annals of Medicine, 1994, 26, 141-146.	3.8	50

#	Article	IF	CITATIONS
109	Taming Immune and Inflammatory Responses to Treat Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 173-176.	2.8	50
110	Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoeâ^'/â^' mice. Immunobiology, 2012, 217, 540-547.	1.9	49
111	Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation, 2018, 138, 2513-2526.	1.6	49
112	Vaccination Strategies and Immune Modulation of Atherosclerosis. Circulation Research, 2020, 126, 1281-1296.	4.5	49
113	Plasma protein accumulation in injured endothelial cells. Experimental and Molecular Pathology, 1979, 30, 12-26.	2.1	48
114	Identification of the <i>BCAR1-CFDP1-TMEM170A</i> Locus as a Determinant of Carotid Intima-Media Thickness and Coronary Artery Disease Risk. Circulation: Cardiovascular Genetics, 2012, 5, 656-665.	5.1	47
115	Fc-dependent binding of monocytes to areas with endothelial injury in the rabbit aorta. Experimental and Molecular Pathology, 1981, 34, 264-280.	2.1	45
116	T-Cell Activation Leads to Reduced Collagen Maturation in Atherosclerotic Plaques of Apoeâ^'/â^' Mice. American Journal of Pathology, 2009, 174, 693-700.	3.8	45
117	Identification of a Danger-Associated Peptide From Apolipoprotein B100 (ApoBDS-1) That Triggers Innate Proatherogenic Responses. Circulation, 2011, 124, 2433-2443.	1.6	45
118	Alternative Splicing of <i>FOXP3</i> Controls Regulatory T Cell Effector Functions and Is Associated With Human Atherosclerotic Plaque Stability. Circulation Research, 2018, 122, 1385-1394.	4.5	45
119	Induction of Neonatal Tolerance to Oxidized Lipoprotein Reduces Atherosclerosis In ApoE Knockout Mice. Molecular Medicine, 2000, 6, 283-290.	4.4	44
120	Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion. Journal of Molecular Medicine, 2010, 88, 795-806.	3.9	44
121	Interferon-Î ³ Released by Activated CD8+ T Lymphocytes Impairs the Calcium Resorption Potential of Osteoclasts in Calcified Human Aortic Valves. American Journal of Pathology, 2017, 187, 1413-1425.	3.8	44
122	Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. European Heart Journal, 2019, 40, 2495-2503.	2.2	44
123	Scavenger Receptors Mediate Adhesion of Activated B Lymphocytes. Experimental Cell Research, 1998, 239, 16-22.	2.6	43
124	Retinoic Acid Inhibits Nitric Oxide Synthase-2 Expression through the Retinoic Acid Receptor-α. Biochemical and Biophysical Research Communications, 2000, 270, 846-851.	2.1	43
125	IKKβâ€dependent NFâ€ÎºB pathway controls vascular inflammation and intimal hyperplasia. FASEB Journal, 2005, 19, 1293-1295.	0.5	43
126	Induction of CD36 by allâ€ŧrans retinoic acid: retinoic acid receptor signaling in the pathogenesis of atherosclerosis. FASEB Journal, 2001, 15, 1221-1223.	0.5	42

#	Article	IF	CITATIONS
127	Novel Multiomics Profiling of Human Carotid Atherosclerotic Plaques and Plasma Reveals Biliverdin Reductase B asÂa Marker of Intraplaque Hemorrhage. JACC Basic To Translational Science, 2018, 3, 464-480.	4.1	42
128	T Cell–Mediated Inflammation in Adipose Tissue Does Not Cause Insulin Resistance in Hyperlipidemic Mice. Circulation Research, 2009, 104, 961-968.	4.5	41
129	<i>Rip2</i> Deficiency Leads to Increased Atherosclerosis Despite Decreased Inflammation. Circulation Research, 2011, 109, 1210-1218.	4.5	39
130	Modulation of Autoimmunity and Atherosclerosis – Common Targets and Promising Translational Approaches Against Disease –. Circulation Journal, 2015, 79, 924-933.	1.6	38
131	Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e145-e158.	2.4	38
132	PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling. Circulation Research, 2020, 126, 571-585.	4.5	38
133	Valvular osteoclasts in calcification and aortic valve stenosis severity. International Journal of Cardiology, 2013, 168, 2264-2271.	1.7	37
134	NOD2-Mediated Innate Immune Signaling Regulates the Eicosanoids in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2193-2201.	2.4	37
135	α7 Nicotinic Acetylcholine Receptor Is Expressed in Human Atherosclerosis and Inhibits Disease in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2632-2636.	2.4	37
136	Deficiency of the T cell regulator <i>Casitas B-cell lymphoma-B</i> aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. European Heart Journal, 2019, 40, 372-382.	2.2	37
137	The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. Journal of Clinical Investigation, 2021, 131, .	8.2	37
138	Effect of sex and age on serum biochemical reference ranges in C57BL/6J mice. Comparative Medicine, 2004, 54, 176-8.	1.0	37
139	Innate immune receptor NOD2 promotes vascular inflammation and formation of lipidâ€rich necrotic cores in hypercholesterolemic mice. European Journal of Immunology, 2014, 44, 3081-3092.	2.9	36
140	T Cell-based Therapies for Atherosclerosis. Current Pharmaceutical Design, 2013, 19, 5850-5858.	1.9	36
141	Immune mechanisms in atherosclerosis. Coronary Artery Disease, 1994, 5, 216-222.	0.7	34
142	The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. Journal of Vascular Surgery, 1999, 30, 36-50.	1.1	34
143	ACCUMULATION OF IgG AND COMPLEMENT FACTOR C3 IN HUMAN ARTERIAL ENDOTHELIUM AND ATHEROSCLEROTIC LESIONS. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica Section A, Pathology, 1984, 92A, 429-435.	0.3	34
144	IgG binding to cytoskeletal intermediate filaments activates the complement cascade. Experimental Cell Research, 1987, 170, 338-350.	2.6	32

#	Article	IF	CITATIONS
145	The Role of Adaptive Immunity in Atherosclerosis. Annals of the New York Academy of Sciences, 2000, 902, 53-64.	3.8	32
146	Hypercholesterolemia leads to elevated TGF-β1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. Atherosclerosis, 2009, 204, 381-387.	0.8	32
147	Cyclosporine A Inhibits Induction of DNA Synthesis by PDGF and Other Peptide Mitogens in Cultured Rat Aortic Smooth Muscle Cells and Dermal Fibroblasts. Growth Factors, 1991, 4, 209-219.	1.7	31
148	Low <i>TLR7</i> gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events. Cardiovascular Research, 2017, 113, 30-39.	3.8	31
149	Increased levels of the homeostatic chemokine CXCL13 in human atherosclerosis – Potential role in plaque stabilization. Atherosclerosis, 2012, 224, 266-273.	0.8	30
150	Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Frontiers in Immunology, 2018, 9, 950.	4.8	29
151	3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlrâ^'/â^' mice. Cardiovascular Research, 2020, 116, 1948-1957.	3.8	29
152	Inflammatory Interaction Between LIGHT and Proteinase-Activated Receptor-2 in Endothelial Cells. Circulation Research, 2009, 104, 60-68.	4.5	28
153	Cysteinyl Leukotriene Signaling Aggravates Myocardial Hypoxia in Experimental Atherosclerotic Heart Disease. PLoS ONE, 2012, 7, e41786.	2.5	28
154	<i>CARD8</i> gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation. Clinical Science, 2013, 125, 401-407.	4.3	26
155	Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. Scientific Reports, 2016, 6, 28337.	3.3	26
156	Animal Models of Atherosclerosis–Supportive Notes and Tricks of the Trade. Circulation Research, 2022, 130, 1869-1887.	4.5	26
157	The B Cell. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 523-524.	2.4	24
158	Pulling down the plug on atherosclerosis: Cooling down the inflammasome. Nature Medicine, 2011, 17, 790-791.	30.7	24
159	The Atheroprotective Effect of 17β-Estradiol Depends on Complex Interactions in Adaptive Immunity. American Journal of Pathology, 2005, 167, 267-274.	3.8	23
160	Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. British Journal of Pharmacology, 1999, 128, 637-646.	5.4	22
161	Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1519-1527.	2.4	22
162	Inflammasome-Driven Interleukin-1α andÂInterleukin-1β Production in Atherosclerotic Plaques Relates to Hyperlipidemia and Plaque Complexity. JACC Basic To Translational Science, 2019, 4, 304-317.	4.1	22

#	Article	IF	CITATIONS
163	Lack of Invariant Natural Killer T Cells Affects Lipid Metabolism in Adipose Tissue of Diet-Induced Obese Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1189-1196.	2.4	21
164	Activation-induced FOXP3 isoform profile in peripheral CD4+ T cells is associated with coronary artery disease. Atherosclerosis, 2017, 267, 27-33.	0.8	21
165	miR-29b Mediates the ChronicÂInflammatory Response in Radiotherapy-Induced Vascular Disease. JACC Basic To Translational Science, 2019, 4, 72-82.	4.1	20
166	Hydrogen peroxide induces mRNA for tumour necrosis factor α in human endothelial cells. Free Radical Research, 1999, 31, 503-512.	3.3	19
167	Gene expression of inflammatory mediators in different chambers of the human heart. Annals of Thoracic Surgery, 2000, 70, 562-567.	1.3	19
168	Immunomodulation and vaccination for atherosclerosis. Expert Opinion on Biological Therapy, 2004, 4, 599-612.	3.1	18
169	Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion. Diabetes, 2015, 64, 3425-3438.	0.6	18
170	Endothelin-1 increases expression and activity of arginase 2 via ETB receptors and is co-expressed with arginase 2 in human atherosclerotic plaques. Atherosclerosis, 2020, 292, 215-223.	0.8	18
171	Thrombin inhibitor reduces myocardial infarction in apoEâ^'/â^'× LDLRâ^'/â^'mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H872-H877.	3.2	17
172	Atherosclerosis Susceptibility in Mice Is Independent of the <i>V1</i> Immunoglobulin Heavy Chain Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 25-36.	2.4	17
173	Developing a vaccine against atherosclerosis. Nature Reviews Cardiology, 2020, 17, 451-452.	13.7	15
174	The inflammatory cytokine interferonâ€gamma inhibits sortilinâ€1 expression in hepatocytes via the JAK/STAT pathway. European Journal of Immunology, 2017, 47, 1918-1924.	2.9	15
175	Cellular and immunologic features of carotid artery disease in man and experimental animal models. European Journal of Vascular Surgery, 1990, 4, 49-55.	0.9	14
176	Tackling Two Diseases with HDL. Science, 2010, 328, 1641-1642.	12.6	14
177	Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth Muscle Cell Lipid Transdifferentiation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 659-676.	2.4	12
178	Reduced Frequency of Memory CD8 ⁺ T Lymphocytes in Cerebrospinal Fluid and Blood of Patients with Multiple Sclerosis. Autoimmunity, 1995, 21, 231-239.	2.6	11
179	TGF-β in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, E137; author reply E137-8.	2.4	10
180	Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thrombosis and Haemostasis, 2014, 112, 332-341.	3.4	10

#	Article	IF	CITATIONS
181	Deficiency of Nitric Oxide Synthase 2 Results in Increased Neointima Formation in a Mouse Model of Vascular Injury. Journal of Cardiovascular Pharmacology, 2003, 41, 897-902.	1.9	9
182	Gene Deletion of NF-κB p105 Enhances Neointima Formation in a Mouse Model of Carotid Artery Injury. Cardiovascular Drugs and Therapy, 2006, 20, 103-111.	2.6	9
183	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 1998, 9, 73-75.	2.7	9
184	MEDICINE: LIGHT Hits the Liver. Science, 2007, 316, 206-207.	12.6	8
185	Human Genetic Evidence for Involvement of CD137 in Atherosclerosis. Molecular Medicine, 2014, 20, 456-465.	4.4	8
186	Endothelial Dysfunction and Injury in Atherosclerosis. Acta Medica Scandinavica, 1987, 221, 11-17.	0.0	7
187	Fatty acid binding protein 4 in circulating leucocytes reflects atherosclerotic lesion progression in <i>Apoe</i> ^{â^'/â^'} mice. Journal of Cellular and Molecular Medicine, 2013, 17, 303-310.	3.6	7
188	Adaptive immunity in acute coronary syndromes: chicken or egg?. European Heart Journal, 2018, 39, 1098-1099.	2.2	7
189	Atherosclerosis, Thrombosis, and Vascular Biology. , 2012, , 409-412.		7
190	Toll in the vessel wall-for better or worse?. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2637-2638.	7.1	6
191	Increased Carotid Artery Lesion Inflammation Upon Treatment With the CD137 Agonistic Antibody 2A. Circulation Journal, 2017, 81, 1945-1952.	1.6	6
192	Inflammation, protection, and the problems of translation. Nature Reviews Cardiology, 2018, 15, 729-730.	13.7	6
193	Vaccination and atherosclerosis. Current Atherosclerosis Reports, 2004, 6, 158-164.	4.8	5
194	Epidemiology Complements Immunology in the Heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2178-2180.	2.4	4
195	Activation of VPAC1 receptors aggravates early atherosclerosis in hypercholesterolemic apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications, 2010, 402, 471-476.	2.1	4
196	How to Chew Up Cells. Circulation Research, 2012, 111, 669-671.	4.5	4
197	Letter to the editors. Journal of Immunological Methods, 1985, 82, 185.	1.4	2
198	A Journey in Science: Medical Scientist in Translation. Molecular Medicine, 2014, 20, 381-389.	4.4	2

#	Article	IF	CITATIONS
199	How to Repeat a Success and Control a Bad Influence. Circulation, 2015, 131, 525-527.	1.6	2
200	OUP accepted manuscript. Cardiovascular Research, 2021, 117, e166-e168.	3.8	2
201	Molecular Cell Biology of Atherosclerosis. , 2014, , 1-17.		2
202	Solid-phase preparation of vimentin-type intermediate filaments for immunoassays. Journal of Immunological Methods, 1985, 85, 401-407.	1.4	1
203	Detrimental and protective roles of adaptive immunity in atherosclerosis. International Congress Series, 2004, 1262, 59-62.	0.2	1
204	ENDOTHELIAL STRUCTURE IN RABBITS WITH MODERATE HYPERCHOLESTEROLAEMI. Acta Pathologica Et Microbiologica Scandinavica Section A, Pathology, 1977, 85A, 671-682.	0.1	1
205	At its Heart, Homeostasis Is About T Cells â^—. Journal of the American College of Cardiology, 2015, 65, 1187-1189.	2.8	1
206	Autoimmune Aspects of Atherosclerosis. , 2001, , 17-26.		1
207	Abstract 512: The Long Non-coding Rna MIAT Regulates Smooth Muscle Cell Proliferation and Macrophage Activity in Advanced Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	1
208	Clinical risk scores for stroke correlate with molecular signatures of vulnerability in symptomatic carotid patients. IScience, 2022, 25, 104219.	4.1	1
209	Molecular Biology of Atherosclerosis. , 2015, , 121-135.		Ο
210	Abstract 52: The BiKE Project: Gene Expression Signatures, Pathways and Networks in Human Carotid Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
211	Abstract 136: Identification of Melanoregulin as Novel Marker for Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	Ο
212	Abstract 121: Pro-inflammatory Cytokine Ifng Modulates Hepatic Sortilin Expression and Lipid Metabolism Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
213	Abstract 127: Induction of miR-21 Increases Fibrous Cap Stability in Vulnerable Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	Ο
214	Abstract 636: Accelerated Atherosclerosis in the Context of Rheumatoid Arthritis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
215	Abstract 149: Analysis of Radiotherapy Induced Vascular Lesions Reveals Potential Therapies Against Innate Inflammation in an ApoE Knockout Mouse Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
216	Abstract 367: Pcsk6 Is a Key Protease Modulating Smooth Muscle Cell Activation in Vascular Remodeling and Plaque Vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0

#	Article	IF	CITATIONS
217	Abstract 150: Identification of SYNPO2, SYNM, LMOD1, PDLIM7 and PLN as Novel Markers of Smooth Muscle Cells in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
218	Abstract 357: Intimal Smooth Muscle Cells Are Vascular Tissue Specific Innate Immune Effector Cell. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0