
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123429/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2008, 283, 36328-36337.                                                                                     | 3.4 | 87        |
| 2  | Molecular Basis for the Recognition of Long-chain Substrates by Plant α-Glucosidases. Journal of<br>Biological Chemistry, 2013, 288, 19296-19303.                                                                                                            | 3.4 | 83        |
| 3  | α-Glucosidase Mutant Catalyzes "α-Glycosynthase―type Reaction. Bioscience, Biotechnology and<br>Biochemistry, 2002, 66, 928-933.                                                                                                                             | 1.3 | 75        |
| 4  | In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis. BMC Complementary and Alternative Medicine, 2012, 12, 27.                                                          | 3.7 | 69        |
| 5  | Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of α-glucosidase from<br>Schizosaccharomyces pombe. FEBS Journal, 2001, 268, 2270-2280.                                                                                      | 0.2 | 67        |
| 6  | Oligosaccharide Binding to Barley α-Amylase 1. Journal of Biological Chemistry, 2005, 280, 32968-32978.                                                                                                                                                      | 3.4 | 67        |
| 7  | Metabolic Mechanism of Mannan in a Ruminal Bacterium, Ruminococcus albus, Involving Two<br>Mannoside Phosphorylases and Cellobiose 2-Epimerase. Journal of Biological Chemistry, 2012, 287,<br>42389-42399.                                                  | 3.4 | 64        |
| 8  | Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and<br>catalytic mechanism. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1382-1391.                                                 | 2.5 | 63        |
| 9  | The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiology and Biochemistry, 2019, 135, 263-271.                                                                                              | 5.8 | 58        |
| 10 | Substrate Recognition Mechanism of α-1,6-Glucosidic Linkage Hydrolyzing Enzyme, Dextran Glucosidase<br>from Streptococcus mutans. Journal of Molecular Biology, 2008, 378, 913-922.                                                                          | 4.2 | 57        |
| 11 | Localization of α-Glucosidases I, II, and III in Organs of European Honeybees,Apis melliferaL., and the<br>Origin of α-Glucosidase in Honey. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2346-2352.                                                | 1.3 | 56        |
| 12 | Overexpression and characterization of two unknown proteins, Yicl and YihQ, originated from Escherichia coli. Protein Expression and Purification, 2004, 37, 170-179.                                                                                        | 1.3 | 51        |
| 13 | Structural elements in dextran glucosidase responsible for high specificity to long chain substrate.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 688-698.                                                                        | 2.3 | 51        |
| 14 | Structural Insights into the Epimerization of β-1,4-Linked Oligosaccharides Catalyzed by Cellobiose<br>2-Epimerase, the Sole Enzyme Epimerizing Non-anomeric Hydroxyl Groups of Unmodified Sugars.<br>Journal of Biological Chemistry, 2014, 289, 3405-3415. | 3.4 | 49        |
| 15 | α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cellular and<br>Molecular Life Sciences, 2016, 73, 2727-2751.                                                                                                      | 5.4 | 48        |
| 16 | Purification and characterization of Acremonium implicatum α-glucosidase having regioselectivity for<br>α-1,3-glucosidic linkage. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1700, 189-198.                                              | 2.3 | 47        |
| 17 | Purification and Substrate Specificity of Honeybee, Apis mellifera L., α-Glucosidase III. Bioscience,<br>Biotechnology and Biochemistry, 2001, 65, 1610-1616.                                                                                                | 1.3 | 46        |
| 18 | Purification, characterization and molecular cloning of tyrosinase from the cephalopod<br>mollusk,Illex argentinus. FEBS Journal, 2003, 270, 4026-4038.                                                                                                      | 0.2 | 44        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Biochemical Characterization of a Thermophilic Cellobiose 2-Epimerase from a Thermohalophilic<br>Bacterium, <i>Rhodothermus marinus</i> JCM9785. Bioscience, Biotechnology and Biochemistry, 2011,<br>75, 2162-2168.                    | 1.3 | 43        |
| 20 | Involvement of Individual Subsites and Secondary Substrate Binding Sites in Multiple Attack on<br>Amylose by Barley α-Amylase. Biochemistry, 2005, 44, 1824-1832.                                                                       | 2.5 | 42        |
| 21 | Structural Elucidation of Dextran Degradation Mechanism by Streptococcus mutans Dextranase<br>Belonging to Glycoside Hydrolase Family 66. Journal of Biological Chemistry, 2012, 287, 19916-19926.                                      | 3.4 | 42        |
| 22 | Molecular Cloning of cDNA for Trehalase from the European Honeybee, <i>Apis mellifera</i> L., and Its<br>Heterologous Expression in <i>Pichia pastoris</i> . Bioscience, Biotechnology and Biochemistry, 2007,<br>71, 2256-2265.        | 1.3 | 41        |
| 23 | Truncation of N- and C-terminal regions of Streptococcus mutans dextranase enhances catalytic activity. Applied Microbiology and Biotechnology, 2011, 91, 329-339.                                                                      | 3.6 | 41        |
| 24 | Molecular cloning and expression of an isomalto-dextranase gene from Arthrobacter globiformis T6.<br>Journal of Bacteriology, 1994, 176, 7730-7734.                                                                                     | 2.2 | 39        |
| 25 | Chemical constituents and free radical scavenging activity of corn pollen collected from Apis<br>mellifera hives compared to floral corn pollen at Nan, Thailand. BMC Complementary and Alternative<br>Medicine, 2012, 12, 45.          | 3.7 | 39        |
| 26 | Crystal structure of <i>Ruminococcus albus</i> cellobiose 2â€epimerase: Structural insights into epimerization of unmodified sugar. FEBS Letters, 2013, 587, 840-846.                                                                   | 2.8 | 39        |
| 27 | Molecular Cloning and Nucleotide Sequences of cDNA and Gene Encoding <i>endo</i> -Inulinase<br>from <i>Penicillium purpurogenum</i> . Bioscience, Biotechnology and Biochemistry, 1996, 60, 1780-1785.                                  | 1.3 | 37        |
| 28 | A Catalytic Amino Acid and Primary Structure of Active Site in <i>Aspevgillus niger</i> α-Glucosidase.<br>Bioscience, Biotechnology and Biochemistry, 1997, 61, 1091-1098.                                                              | 1.3 | 36        |
| 29 | A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in<br>Soybean. PLoS ONE, 2015, 10, e0128527.                                                                                           | 2.5 | 35        |
| 30 | Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. British Journal of Nutrition, 2015, 114, 1774-1783.                                      | 2.3 | 34        |
| 31 | Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and â^'5/â~'6 of barley α-amylase 1. FEBS Journal, 2001, 268, 6545-6558.                                                             | 0.2 | 33        |
| 32 | Chemical Modification and Amino Acid Sequence of Active Site in Sugar Beetα-Glucosidase. Bioscience,<br>Biotechnology and Biochemistry, 1995, 59, 459-463.                                                                              | 1.3 | 31        |
| 33 | Purification and Characterization of α-Glucosidase I from Japanese Honeybee (Apis cerana japonica) and<br>Molecular Cloning of Its cDNA. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2889-2898.                               | 1.3 | 31        |
| 34 | A novel mechanism for the promotion of quercetin glycoside absorption by megalo<br>α-1,6-glucosaccharide in the rat small intestine. Food Chemistry, 2013, 136, 293-296.                                                                | 8.2 | 30        |
| 35 | Calcium Ion-Dependent Increase in Thermostability of Dextran Glucosidase from <i>Streptococcus mutans</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 1557-1563.                                                            | 1.3 | 29        |
| 36 | Characterization of <i><scp>R</scp>uminococcusÂalbus</i> cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. FEBS Journal, 2013, 280, 4463-4473. | 4.7 | 29        |

| #  | Article                                                                                                                                                                                                                                                  | IF            | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 37 | Identification and Characterization of Cellobiose 2-Epimerases from Various Aerobes. Bioscience,<br>Biotechnology and Biochemistry, 2013, 77, 189-193.                                                                                                   | 1.3           | 29        |
| 38 | Barley α-amylase Met53 situated at the high-affinity subsite ⴒ2 belongs to a substrate binding motif in<br>the β→α loop 2 of the catalytic (β/α)8 -barrel and is critical for activity and substrate specificity. FEBS<br>Journal, 2002, 269, 5377-5390. | 0.2           | 28        |
| 39 | Purification and characterization of the hyper-glycosylated extracellular α-glucosidase from<br>Schizosaccharomyces pombe. Enzyme and Microbial Technology, 2005, 37, 472-480.                                                                           | 3.2           | 28        |
| 40 | Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie, 2007, 89, 49-62.                                                                                                                                             | 2.6           | 27        |
| 41 | Catalytic Mechanism of Retaining α-Galactosidase Belonging to Glycoside Hydrolase Family 97. Journal of Molecular Biology, 2009, 392, 1232-1241.                                                                                                         | 4.2           | 27        |
| 42 | Function and structure of <scp>GH</scp> 13_31 αâ€glucosidase with high αâ€(1→4)â€glucosidic linkage speci<br>and transglucosylation activity. FEBS Letters, 2018, 592, 2268-2281.                                                                        | ficity<br>2.8 | 27        |
| 43 | Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds.<br>Plant Molecular Biology, 1992, 18, 973-976.                                                                                                          | 3.9           | 26        |
| 44 | Structural elements to convertEscherichia coliα-xylosidase (Yicl) into α-glucosidase. FEBS Letters, 2006,<br>580, 2707-2711.                                                                                                                             | 2.8           | 25        |
| 45 | Immobilization of a Thermostable Cellobiose 2-Epimerase from <i>Rhodothermus marinus</i> JCM9785<br>and Continuous Production of Epilactose. Bioscience, Biotechnology and Biochemistry, 2012, 76,<br>1584-1587.                                         | 1.3           | 25        |
| 46 | Purification, Characterization, and Sequence Analysis of Two α-Amylase Isoforms from Azuki Bean,Vigna<br>angularis, Showing Different Affinity towards β-Cyclodextrin Sepharose. Bioscience, Biotechnology<br>and Biochemistry, 2003, 67, 1080-1093.     | 1.3           | 22        |
| 47 | Enzymatic Characteristics of Cellobiose Phosphorylase from <i>Ruminococcus albus</i> NE1 and<br>Kinetic Mechanism of Unusual Substrate Inhibition in Reverse Phosphorolysis. Bioscience,<br>Biotechnology and Biochemistry, 2012, 76, 812-818.           | 1.3           | 22        |
| 48 | Cloning and Sequencing of a cDNA Encoding α-Glucosidase from Sugar Beet. Bioscience, Biotechnology and Biochemistry, 1997, 61, 875-880.                                                                                                                  | 1.3           | 21        |
| 49 | Catalytic Reaction Mechanism Based on α-Secondary Deuterium Isotope Effects in Hydrolysis of<br>Trehalose by European Honeybee Trehalase. Bioscience, Biotechnology and Biochemistry, 2009, 73,<br>2466-2473.                                            | 1.3           | 21        |
| 50 | Characterization of a thermophilic 4-‹i>O‹/i>-β-‹scp>d‹/scp>-mannosyl-‹scp>d‹/scp>-glucose<br>phosphorylase from ‹i>Rhodothermus marinus‹/i>. Bioscience, Biotechnology and Biochemistry, 2014,<br>78, 263-270.                                          | 1.3           | 21        |
| 51 | Biochemical and structural characterization of Marinomonas mediterranea d-mannose isomerase<br>Marme_2490 phylogenetically distant from known enzymes. Biochimie, 2018, 144, 63-73.                                                                      | 2.6           | 21        |
| 52 | <i>Bacteroides thetaiotaomicron</i> VPlâ€5482 glycoside hydrolase family 66 homolog catalyzes dextranolytic and cyclization reactions. FEBS Journal, 2012, 279, 3185-3191.                                                                               | 4.7           | 20        |
| 53 | Aromatic Residue on β→α Loop 1 in the Catalytic Domain Is Important to the Transglycosylation Specificity<br>of Glycoside Hydrolase Family 31 α-Glucosidase. Bioscience, Biotechnology and Biochemistry, 2013, 77,<br>1759-1765.                         | 1.3           | 20        |
| 54 | Biodecolorization of a food azo dye by the deep sea Dermacoccus abyssi MT1.1T strain from the<br>Mariana Trench. Journal of Environmental Management, 2014, 132, 155-164.                                                                                | 7.8           | 20        |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Glucoamylase Originating fromSchwanniomyces occidentalisls a Typical α-Glucosidase. Bioscience,<br>Biotechnology and Biochemistry, 2005, 69, 1905-1913.                                                                                                               | 1.3 | 19        |
| 56 | Novel Dextranase Catalyzing Cycloisomaltooligosaccharide Formation and Identification of Catalytic<br>Amino Acids and Their Functions Using Chemical Rescue Approach. Journal of Biological Chemistry,<br>2012, 287, 19927-19935.                                     | 3.4 | 19        |
| 57 | Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the<br>biochemical functions of the 4-O-β-d-mannosyl-d-glucose phosphorylase-like protein, UnkA. Bioscience,<br>Biotechnology and Biochemistry, 2015, 79, 969-977. | 1.3 | 19        |
| 58 | Efficient synthesis of αâ€galactosyl oligosaccharides using a mutant <i>Bacteroides<br/>thetaiotaomicron</i> retaining αâ€galactosidase ( <i>Bt</i> <scp>GH</scp> 97b). FEBS Journal, 2017, 284,<br>766-783.                                                          | 4.7 | 19        |
| 59 | Purification and Identification of the Essential Ionizable Groups of Honeybee, Apis mellifera L.,<br>Trehalase. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2657-2665.                                                                                      | 1.3 | 18        |
| 60 | Function-unknown Glycoside Hydrolase Family 31 Proteins, mRNAs of which were Expressed in Rice<br>Ripening and Germinating Stages, are Â-Glucosidase and Â-Xylosidase. Journal of Biochemistry, 2007, 142,<br>491-500.                                                | 1.7 | 18        |
| 61 | Molecular Cloning of cDNAs and Genes for Three α-Glucosidases from European Honeybees,Apis<br>melliferaL., and Heterologous Production of Recombinant Enzymes inPichia pastoris. Bioscience,<br>Biotechnology and Biochemistry, 2007, 71, 1703-1716.                  | 1.3 | 18        |
| 62 | Amino Acids in Conserved Region II Are Crucial to Substrate Specificity, Reaction Velocity, and<br>Regioselectivity in the Transglucosylation of Honeybee GH-13 α-Glucosidases. Bioscience, Biotechnology<br>and Biochemistry, 2012, 76, 1967-1974.                   | 1.3 | 18        |
| 63 | Identification of Rice β-Glucosidase with High Hydrolytic Activity towards Salicylic Acid<br>β- <scp>D</scp> -Glucoside. Bioscience, Biotechnology and Biochemistry, 2013, 77, 934-939.                                                                               | 1.3 | 18        |
| 64 | Molecular Cloning of Isomaltotrio-dextranase Gene fromBrevibacterium<br>fuscumvar.dextranlyticumstrain 0407 and Its Expression inEscherichia coli. Bioscience, Biotechnology<br>and Biochemistry, 1999, 63, 1582-1588.                                                | 1.3 | 17        |
| 65 | The first α-1,3-glucosidase from bacterial origin belonging to glycoside hydrolase family 31. Biochimie, 2009, 91, 1434-1442.                                                                                                                                         | 2.6 | 17        |
| 66 | Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrateâ€binding site in GH13 dextran glucosidase. FEBS Letters, 2015, 589, 484-489.                                                                         | 2.8 | 17        |
| 67 | Extracellular and cell-associated forms of Gluconobacter oxydans dextran dextrinase change their<br>localization depending on the cell growth. Biochemical and Biophysical Research Communications,<br>2015, 456, 500-505.                                            | 2.1 | 17        |
| 68 | Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation.<br>Applied Microbiology and Biotechnology, 2017, 101, 6399-6408.                                                                                               | 3.6 | 17        |
| 69 | Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to<br>recognition of long-chain substrates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013,<br>1834, 329-335.                                    | 2.3 | 16        |
| 70 | Different molecular complexity of linear-isomaltomegalosaccharides and β-cyclodextrin on enhancing<br>solubility of azo dye ethyl red: Towards dye biodegradation. Bioresource Technology, 2014, 169,<br>518-524.                                                     | 9.6 | 16        |
| 71 | Characterization of a Glycoside Hydrolase Family 31 α-Glucosidase Involved in Starch Utilization<br>in <i>Podospora anserina</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 2117-2124.                                                                   | 1.3 | 15        |
| 72 | Structural elements responsible for the glucosidic linkageâ€selectivity of a glycoside hydrolase family<br>13 exoâ€glucosidase. FEBS Letters, 2015, 589, 865-869.                                                                                                     | 2.8 | 15        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Enzymatic characteristics of d-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Applied Microbiology and Biotechnology, 2019, 103, 6559-6570.                                                                                 | 3.6 | 15        |
| 74 | The Delay in the Development of Experimental Colitis from Isomaltosyloligosaccharides in Rats Is<br>Dependent on the Degree of Polymerization. PLoS ONE, 2012, 7, e50658.                                                                                      | 2.5 | 14        |
| 75 | Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Carbohydrate Research, 2013, 379, 21-25.                                                                                                  | 2.3 | 14        |
| 76 | Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp.<br>AHU 2001 with broad substrate specificity. Biochimie, 2015, 108, 140-148.                                                                                | 2.6 | 14        |
| 77 | A Transposon Mutagenesis System for Bifidobacterium longum subsp. longum Based on an IS 3 Family<br>Insertion Sequence, IS Blo11. Applied and Environmental Microbiology, 2018, 84, .                                                                          | 3.1 | 14        |
| 78 | Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two <scp>GH</scp> 130 subfamilies. FEBS Letters, 2016, 590, 828-837.                                                                                     | 2.8 | 13        |
| 79 | Purification and Characterization of a Liquefying α-Amylase from Alkalophilic<br>Thermophilic <i>Bacillus</i> sp. AAH-31. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1378-1383.                                                                     | 1.3 | 12        |
| 80 | Replacement of the Catalytic Nucleophile Aspartyl Residue of Dextran Glucosidase by Cysteine<br>Sulfinate Enhances Transglycosylation Activity. Journal of Biological Chemistry, 2013, 288, 31670-31677.                                                       | 3.4 | 12        |
| 81 | Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase. FEBS Letters, 2014, 588, 3213-3217.                                                                                                                                                   | 2.8 | 12        |
| 82 | Enzymatic synthesis of alkyl α-2-deoxyglucosides by alkyl alcohol resistant α-glucosidase from<br>Aspergillus niger. Tetrahedron: Asymmetry, 2005, 16, 403-409.                                                                                                | 1.8 | 11        |
| 83 | Structural Advantage of Sugar Beet α-Glucosidase to Stabilize the Michaelis Complex with Long-chain<br>Substrate. Journal of Biological Chemistry, 2015, 290, 1796-1803.                                                                                       | 3.4 | 11        |
| 84 | Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl<br>ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides. Archives of<br>Biochemistry and Biophysics, 2015, 583, 36-46. | 3.0 | 10        |
| 85 | Enzymatic Synthesis of Acarviosyl-maltooligosaccharides Using Disproportionating Enzyme 1.<br>Bioscience, Biotechnology and Biochemistry, 2013, 77, 312-319.                                                                                                   | 1.3 | 9         |
| 86 | A Ubiquitously Expressed UDP-Glucosyltransferase, UGT74J1, Controls Basal Salicylic Acid Levels in Rice. Plants, 2021, 10, 1875.                                                                                                                               | 3.5 | 9         |
| 87 | Identification of Essential Ionizable Groups in Active Site ofAspergillus niger α-Glucosidase. Bioscience,<br>Biotechnology and Biochemistry, 1997, 61, 475-479.                                                                                               | 1.3 | 8         |
| 88 | Transglycosylation by barley α-amylase 1. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 229-237.                                                                                                                                                      | 1.8 | 8         |
| 89 | A Novel Metabolic Pathway for Glucose Production Mediated by α-Glucosidase-catalyzed Conversion of 1,5-Anhydrofructose. Journal of Biological Chemistry, 2012, 287, 22441-22444.                                                                               | 3.4 | 8         |
| 90 | Enhancement of hydrolytic activity of thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31<br>through optimization of amino acid residues surrounding the substrate binding site. Biochemical<br>Engineering Journal, 2014, 86, 8-15.                  | 3.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identification of Essential Ionizable Groups and Evaluation of Subsite Affinities in the Active Site of<br>β-D-Glucosidase F1from aStreptomycessp Bioscience, Biotechnology and Biochemistry, 2002, 66,<br>2060-2067.                                               | 1.3 | 7         |
| 92  | Rice α-glucosidase isozymes and isoforms showing different starch granules-binding and -degrading ability. Biocatalysis and Biotransformation, 2008, 26, 104-110.                                                                                                   | 2.0 | 7         |
| 93  | Crystallization and preliminary crystallographic analysis of dextranase from <i>Streptococcus<br/>mutans</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1542-1544.                                                            | 0.7 | 7         |
| 94  | A Thermophilic Alkalophilic α-Amylase from <i>Bacillus</i> sp. AAH-31 Shows a Novel Domain<br>Organization among Glycoside Hydrolase Family 13 Enzymes. Bioscience, Biotechnology and<br>Biochemistry, 2013, 77, 1867-1873.                                         | 1.3 | 7         |
| 95  | Kinetic properties and substrate inhibition of α-galactosidase from Aspergillus niger. Bioscience,<br>Biotechnology and Biochemistry, 2016, 80, 1747-1752.                                                                                                          | 1.3 | 7         |
| 96  | Structure of a bacterial glycoside hydrolase familyÂ63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. FEBS Journal, 2013, 280, 4560-4571.                                                                           | 4.7 | 7         |
| 97  | Comparison of Enzymatic Properties and Gene Expression Profiles of Two Tuberonic Acid Glucoside<br>.BETAGlucosidases from Oryza sativa L Journal of Applied Glycoscience (1999), 2011, 58, 67-70.                                                                   | 0.7 | 7         |
| 98  | Crystallization and preliminary X-ray analysis of α-xylosidase fromEscherichia coli. Acta<br>Crystallographica Section F: Structural Biology Communications, 2005, 61, 178-179.                                                                                     | 0.7 | 6         |
| 99  | Aglycone specificity of <i>Escherichia coli</i> αâ€xylosidase investigated by transxylosylation. FEBS<br>Journal, 2007, 274, 6074-6084.                                                                                                                             | 4.7 | 6         |
| 100 | Evaluation of acceptor selectivity of <i>Lactococcus lactis</i> ssp. <i>lactis</i> trehalose<br>6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.<br>Bioscience, Biotechnology and Biochemistry, 2017, 81, 1512-1519. | 1.3 | 6         |
| 101 | Biochemical characteristics of maltose phosphorylase MalE from <i>Bacillus</i> sp. AHU2001 and chemoenzymatic synthesis of oligosaccharides by the enzyme. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2097-2109.                                         | 1.3 | 6         |
| 102 | Crystallization and preliminary X-ray analysis ofStreptococcus mutansdextran glucosidase. Acta<br>Crystallographica Section F: Structural Biology Communications, 2007, 63, 774-776.                                                                                | 0.7 | 5         |
| 103 | Colorimetric Quantification of β-(1→4)-Mannobiose and 4-O-β-D-Mannosyl-D-glucose. Journal of Applied<br>Glycoscience (1999), 2014, 61, 117-119.                                                                                                                     | 0.7 | 5         |
| 104 | Structure-function relationship of substrate length specificity of dextran glucosidase from Streptococcus mutans. Biologia (Poland), 2008, 63, 1000-1005.                                                                                                           | 1.5 | 4         |
| 105 | Crystallization and preliminary X-ray crystallographic analysis of α-glucosidase HaG<br>fromHalomonassp. strain H11. Acta Crystallographica Section F, Structural Biology Communications,<br>2014, 70, 464-466.                                                     | 0.8 | 4         |
| 106 | Evidence of Intramolecular Transglucosylation Catalyzed by an .ALPHAGlucosidase Journal of<br>Applied Glycoscience (1999), 2003, 50, 41-44.                                                                                                                         | 0.7 | 3         |
| 107 | Glycoside hydrolase family 31 <i>Escherichia coli</i> α-xylosidase. Biocatalysis and Biotransformation, 2008, 26, 96-103.                                                                                                                                           | 2.0 | 3         |
| 108 | Efficient one-pot enzymatic synthesis of trehalose 6-phosphate using GH65 α-glucoside phosphorylases.<br>Carbohydrate Research, 2020, 488, 107902.                                                                                                                  | 2.3 | 3         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Suicide Substrate-based Inactivation of Endodextranase by .OMEGAEpoxyalkyl<br>.ALPHAD-Glucopyranosides. Journal of Applied Glycoscience (1999), 2010, 57, 269-272.                                                    | 0.7 | 3         |
| 110 | Substrate specificity of glycoside hydrolase family 1 β-glucosidase AtBGlu42 from <i>Arabidopsis<br/>thaliana</i> and its molecular mechanism. Bioscience, Biotechnology and Biochemistry, 2022, 86,<br>231-245.      | 1.3 | 3         |
| 111 | Starch-hydrolyzing Enzymes in Germinating Kidney Bean. Bioscience, Biotechnology and Biochemistry, 1992, 56, 1499-1500.                                                                                               | 1.3 | 2         |
| 112 | Acidophilic β-Galactosidase from Aspergillus niger AHU7120 with Lactose Hydrolytic Activity Under Simulated Gastric Conditions. Journal of Applied Glycoscience (1999), 2014, 61, 53-57.                              | 0.7 | 2         |
| 113 | Substrate Recognition of Escherichia coli Yicl (.ALPHAXylosidase). Journal of Applied Glycoscience<br>(1999), 2008, 55, 111-118.                                                                                      | 0.7 | 2         |
| 114 | Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose. Scientific Reports, 2022, 12, 259.                                                            | 3.3 | 2         |
| 115 | A practical approach to producing isomaltomegalosaccharide using dextran dextrinase from<br>Gluconobacter oxydans ATCC 11894. Applied Microbiology and Biotechnology, 2022, 106, 689-698.                             | 3.6 | 2         |
| 116 | Molecular Mechanism of α-glucosidase. , 2008, , 64-76.                                                                                                                                                                |     | 1         |
| 117 | Production of 1,5-anhydro-d-fructose by an α-glucosidase belonging to glycoside hydrolase family 31.<br>Bioscience, Biotechnology and Biochemistry, 2014, 78, 2064-2068.                                              | 1.3 | 1         |
| 118 | Purification and characterization of a chloride ion-dependent α-glucosidase from the midgut gland of<br>Japanese scallop (Patinopecten yessoensis). Bioscience, Biotechnology and Biochemistry, 2016, 80,<br>479-485. | 1.3 | 1         |
| 119 | Study on Three .ALPHAGlucosidase Isozymes from Honeybee, Apis mellifera L Journal of Applied<br>Glycoscience (1999), 2002, 49, 191-197.                                                                               | 0.7 | 1         |
| 120 | Structural Comparison of <i>Streptococcus mutans</i> Dextran Glucosidase with Glucoside<br>Hydrolases in GH13. Journal of Applied Glycoscience (1999), 2009, 56, 111-117.                                             | 0.7 | 1         |
| 121 | Preliminary evaluation of colorimetric and HPLC-based methods for quantifying β-(1→4)-mannobiose in a crude material. Food Science and Technology Research, 2021, 27, 249-257.                                        | 0.6 | 0         |
| 122 | Isolation and Sequence of a Putative .ALPHAGlucosidase Gene from Brevibacterium fuscum var.<br>dextranlyticum Strain 0407 Journal of Applied Glycoscience (1999), 2001, 48, 287-291.                                  | 0.7 | 0         |
| 123 | Kinetic Studies on Substrate Specificity and Active Site of .BETAD-Glucosidase F1 from Streptomyces sp Journal of Applied Glycoscience (1999), 2002, 49, 265-272.                                                     | 0.7 | 0         |
| 124 | Impact on Substrate Specificity of Mutational Subsite Isozyme Mimicry in Barley .ALPHAAmylase.<br>Journal of Applied Glycoscience (1999), 2003, 50, 143-145.                                                          | 0.7 | 0         |
| 125 | Interactions between Barley .ALPHAAmylases, Substrates, Inhibitors and Regulatory Proteins. Journal of Applied Glycoscience (1999), 2006, 53, 163-169.                                                                | 0.7 | 0         |
| 126 | [Review: Symposium on Applied Glycoscience] Practical Enzymatic Production of Epilactose with Cellobiose 2-Epimerase. Bulletin of Applied Glycoscience, 2013, 3, 137-142.                                             | 0.0 | 0         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Megalo types of αâ€1,6â€glucosaccharide enhance absorption of quercetin glycosides in rats. FASEB<br>Journal, 2013, 27, 636.13.                                                                          | 0.5 | 0         |
| 128 | Bp-6 Amphiphilic function of linear-isomaltomegalosaccharides (L-IMS) on ethyl red (ER) solubility.<br>Bulletin of Applied Glycoscience, 2014, 4, B42.                                                   | 0.0 | 0         |
| 129 | [Review: Symposium on Applied Glycoscience] Structural and Biochemical Studies of Plant<br>α-Glucosidases with a Series of Long-Chain Inhibitors. Bulletin of Applied Glycoscience, 2016, 6,<br>103-108. | 0.0 | 0         |
| 130 | [Review] Functions of Hydrolases, Phosphorylases, and Isomerases Acting on Carbohydrates, and their<br>Application. Bulletin of Applied Glycoscience, 2020, 10, 165-174.                                 | 0.0 | 0         |