
Qiuyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123234/publications.pdf Version: 2024-02-01

ΟЩУЛИС 7ΗΛΝΟ

#	Article	IF	CITATIONS
1	A Novel Controlled PTEN-Knockout Mouse Model for Prostate Cancer Study. Frontiers in Molecular Biosciences, 2021, 8, 696537.	3.5	7
2	Abstract 1760: Role of Batf-dependant Th17 immune response in PTEN-null mouse model. , 2021, , .		0
3	CD4 ⁺ T helper 17 cell response of aged mice promotes prostate cancer cell migration and invasion. Prostate, 2020, 80, 764-776.	2.3	12
4	Age-Related Increased Onset and Progression of Prostate Cancer Is Revealed in Novel Pten-Null Mouse Models. Innovation in Aging, 2020, 4, 129-130.	0.1	3
5	AGE-RELATED ELEVATED CD4+ T HELPER 17 CELL RESPONSE PROMOTES PROSTATE CANCER CELL GROWTH, MIGRATION, AND INVASION. Innovation in Aging, 2019, 3, S879-S879.	0.1	0
6	Disruption of ubiquitin specific protease 26 gene causes male subfertility associated with spermatogenesis defects in miceâ€. Biology of Reproduction, 2019, 100, 1118-1128.	2.7	14
7	Abstract 58: Age-related elevated Th17 immune response contributes to prostate carcinogenesis. , 2018, , .		0
8	Interleukin-17 promotes metastasis in an immunocompetent orthotopic mouse model of prostate cancer. American Journal of Clinical and Experimental Urology, 2018, 6, 114-122.	0.4	9
9	Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene, 2017, 36, 687-699.	5.9	147
10	Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunology Letters, 2017, 184, 7-14.	2.5	241
11	Targeting Th17â€ILâ€I7 Pathway in Prevention of Microâ€Invasive Prostate Cancer in a Mouse Model. Prostate, 2017, 77, 888-899.	2.3	49
12	Posttranscriptional Control of PD-L1 Expression by 17β-Estradiol via PI3K/Akt Signaling Pathway in ERα-Positive Cancer Cell Lines. International Journal of Gynecological Cancer, 2017, 27, 196-205.	2.5	68
13	Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. American Journal of Clinical and Experimental Urology, 2017, 5, 25-33.	0.4	4
14	Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice. International Journal of Molecular Sciences, 2016, 17, 522.	4.1	21
15	Monomethyl Auristatin E Phosphate Inhibits Human Prostate Cancer Growth. Prostate, 2016, 76, 1420-1430.	2.3	16
16	PD-L1 expression is associated with advanced non-small cell lung cancer. Oncology Letters, 2016, 12, 921-927.	1.8	18
17	Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation status and histological type of endometrial cancer. Oncology Letters, 2016, 12, 944-950.	1.8	75
18	Abstract 5171: Interleukin-17 acts through MMP7 to promote prostate cancer. , 2016, , .		1

Abstract 5171: Interleukin-17 acts through MMP7 to promote prostate cancer. , 2016, , . 18

QIUYANG ZHANG

#	Article	IF	CITATIONS
19	Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model. Oncotarget, 2016, 7, 10616-10626.	1.8	8
20	Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor. Oncotarget, 2016, 7, 13651-13666.	1.8	32
21	Abstract A92: Aminomethylphosphonic acid inhibits human prostate xenograft tumor growth through interfering glycine synthesis in the cancer cells. , 2016, , .		Ο
22	PD-1, PD-L1 and PD-L2 expression in mouse prostate cancer. American Journal of Clinical and Experimental Urology, 2016, 4, 1-8.	0.4	22
23	ILâ€17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44â€VCAMâ€1 interaction. Prostate, 2015, 75, 883-895.	2.3	32
24	Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells. International Journal of Molecular Sciences, 2015, 16, 11750-11765.	4.1	9
25	Estradiol Inhibits Th17 Cell Differentiation through Inhibition of <i>RORÎ³T</i> Transcription by Recruiting the ERα/REA Complex to Estrogen Response Elements of the <i>RORÎ³T</i> Promoter. Journal of Immunology, 2015, 194, 4019-4028.	0.8	89
26	Doublecortin May Play a Role in Defining Chondrocyte Phenotype. International Journal of Molecular Sciences, 2014, 15, 6941-6960.	4.1	6
27	AZD5363 Inhibits Inflammatory Synergy between Interleukin-17 and Insulin/Insulin-Like Growth Factor 1. Frontiers in Oncology, 2014, 4, 343.	2.8	10
28	Interleukinâ€17 promotes development of castrationâ€resistant prostate cancer potentially through creating an immunotolerant and proâ€angiogenic tumor microenvironment. Prostate, 2014, 74, 869-879.	2.3	46
29	Interleukin-17 Indirectly Promotes M2 Macrophage Differentiation through Stimulation of COX-2/PGE2 Pathway in the Cancer Cells. Cancer Research and Treatment, 2014, 46, 297-306.	3.0	76
30	Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis. American Journal of Clinical and Experimental Urology, 2014, 2, 300-12.	0.4	3
31	Insulin and <scp>IGF</scp> 1 enhance <scp>IL</scp> â€17â€induced chemokine expression through a <scp>GSK</scp> 3Bâ€dependent mechanism: a new target for melatonin's antiâ€inflammatory action. Journal of Pineal Research, 2013, 55, 377-387.	7.4	56
32	Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis. Drug Design, Development and Therapy, 2013, 7, 635.	4.3	31
33	Comparison of the Tendon Damage Caused by Four Different Anchor Systems Used in Transtendon Rotator Cuff Repair. Advances in Orthopedics, 2012, 2012, 1-6.	1.0	8
34	Interleukin-17 and Prostaglandin E2 Are Involved in Formation of an M2 Macrophage-Dominant Microenvironment in Lung Cancer. Journal of Thoracic Oncology, 2012, 7, 1091-1100.	1.1	97
35	Interleukin-17 Promotes Formation and Growth of Prostate Adenocarcinoma in Mouse Models. Cancer Research, 2012, 72, 2589-2599.	0.9	84
36	LNCaP prostate cancer cells with autocrine interleukinâ€6 expression are resistant to lLâ€6â€induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate, 2012, 72, 1306-1316.	2.3	31

3

QIUYANG ZHANG

#	Article	IF	CITATIONS
37	Abstract 3286: Interleukin-17 receptor c (IL-17RC) knockout mice developed fewer and smaller prostate tumors compared to the wild-type mice in Pten-deficient context. , 2012, , .		0
38	Interleukin-17 Induces Expression of Chemokines and Cytokines in Prostatic Epithelial Cells but Does Not Stimulate Cell Growth In Vitro. International Journal of Medical and Biological Frontiers, 2012, 18, 629-644.	0.2	9
39	Rat Mitochondrion-Neuron Focused Microarray (rMNChip) and Bioinformatics Tools for Rapid Identification of Differential Pathways in Brain Tissues. International Journal of Biological Sciences, 2011, 7, 308-322.	6.4	12
40	Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis, 2011, 49, 75-82.	1.6	26
41	Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Molecular Cancer Therapeutics, 2009, 8, 1292-1304.	4.1	61
42	Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 993-1004.	4.9	18
43	Dysregulated Mitochondrial Genes and Networks with Drug Targets in Postmortem Brain of Patients with Posttraumatic Stress Disorder (PTSD) Revealed by Human Mitochondria-Focused cDNA Microarrays. International Journal of Biological Sciences, 2008, 4, 223-235.	6.4	101
44	Differences in Apoptosis and Cell Cycle Distribution between Human Melanoma Cell Lines UACC903 and UACC903(+6), before and after UV Irradiation. International Journal of Biological Sciences, 2007, 3, 342-348.	6.4	5
45	Third-generation human mitochondria-focused cDNA microarray and its bioinformatic tools for analysis of gene expression. BioTechniques, 2007, 42, 365-375.	1.8	24