Antonio Mario Locci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11230897/publications.pdf

Version: 2024-02-01

933447 1125743 1,375 14 10 13 citations h-index g-index papers 16 16 16 1399 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Modeling of Electric Current Assisted Sintering: An extended fluid-like approach for the description of powders rheological behavior. Chemical Engineering Research and Design, 2020, 154, 283-302.	5.6	7
2	Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO ₂ –3 mol%) Tj ETQq0 the American Ceramic Society, 2010, 93, 2864-2870.	0 0 rgBT /0 3.8	Overlock 10 T 20
3	A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders. Science and Technology of Advanced Materials, 2010, 11, 045005.	6.1	23
4	Mechanochemically activated powders as precursors for spark plasma sintering (SPS) processes. , $2010, , 275-303.$		1
5	Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering Reports, 2009, 63, 127-287.	31.8	1,047
6	Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. Journal of Cleaner Production, 2009, 17, 877-882.	9.3	29
7	Reactive Spark Plasma Sintering of rhenium diboride. Ceramics International, 2009, 35, 397-400.	4.8	50
8	Spark plasma sintering of self-propagating high-temperature synthesized TiC0.7/TiB2 powders and detailed characterization of dense product. Ceramics International, 2009, 35, 2587-2599.	4.8	15
9	Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. Journal of Alloys and Compounds, 2009, 478, 572-578.	5.5	77
10	Efficient Synthesis/Sintering Routes To Obtain Fully Dense Ultra-High-Temperature Ceramics (UHTCs). Industrial & Engineering Chemistry Research, 2007, 46, 9087-9096.	3.7	33
11	Conventional and SPS Sintering of a Nanocrystalline Alumina: A Comparative Study. Advances in Science and Technology, 2006, 45, 957-962.	0.2	2
12	Spark Plasma Synthesis/Sintering of Dense Ceramic, Intermetallic and Composite Materials. Advances in Science and Technology, 2006, 45, 1411.	0.2	0
13	Simultaneous spark plasma synthesis and consolidation of WC/Co composites. Journal of Materials Research, 2005, 20, 734-741.	2.6	22
14	A review on combustion synthesis of novel materials: recent experimental and modeling results. Journal of Chemical Technology and Biotechnology, 2003, 78, 122-127.	3.2	48