
Thomas O Crist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11229584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactive Effects of White-Tailed Deer, an Invasive Shrub, and Exotic Earthworms on Leaf Litter Decomposition. Ecosystems, 2020, 23, 1523-1535.	3.4	6
2	Bee communities and pollination services in adjacent crop fields following flower removal in an invasive forest shrub. Ecological Applications, 2020, 30, e02078.	3.8	6
3	Experimental effects of white-tailed deer and an invasive shrub on forest ant communities. Oecologia, 2019, 191, 633-644.	2.0	6
4	Shifts in dragonfly community structure across aquatic ecotones. International Journal of Odonatology, 2019, 22, 121-133.	0.5	1
5	Invasive shrub cover and tree species composition influence exotic earthworms. Forest Ecology and Management, 2019, 447, 53-59.	3.2	2
6	Invasive earthworm and soil litter response to the experimental removal of whiteâ€ŧailed deer and an invasive shrub. Ecology, 2019, 100, e02688.	3.2	15
7	Nesting habitat enhancement for wild bees within soybean fields increases crop production. Apidologie, 2019, 50, 833-844.	2.0	22
8	The functional response and prey preference of generalist Nabis (Hemiptera: Nabidae) predators to leafhopper prey (Hemiptera: Cicadellidae). Canadian Entomologist, 2018, 150, 190-200.	0.8	7
9	The Effects of Dispersal and Predator Density on Prey Survival in an Insect-Red Clover Metacommunity. Journal of Insect Science, 2018, 18, .	1.5	Ο
10	From dispersal to predation: A global synthesis of ant–seed interactions. Ecology and Evolution, 2018, 8, 9122-9138.	1.9	29
11	Ant species assembly in constructed grasslands is structured at patch and landscape levels. Insect Conservation and Diversity, 2017, 10, 180-191.	3.0	13
12	Effectiveness of Winkler Litter Extraction and Pitfall Traps in Sampling Ant Communities and Functional Groups in a Temperate Forest. Environmental Entomology, 2017, 46, 470-479.	1.4	11
13	Effects of an invasive shrub, Lonicera maackii, and a generalist herbivore, white-tailed deer, on forest floor plant community composition. Forest Ecology and Management, 2017, 402, 204-212.	3.2	21
14	Effects of avpr1a length polymorphism on male social behavior and reproduction in semiâ€natural populations of prairie voles (Microtus ochrogaster). Ethology, 2017, 123, 675-688.	1.1	6
15	Ants and plants as indicators of biodiversity, ecosystem services, and conservation value in constructed grasslands. Biodiversity and Conservation, 2016, 25, 1481-1501.	2.6	21
16	Fine-scale spatial patterns of genetic relatedness among resident adult prairie voles. Journal of Mammalogy, 2015, 96, 1194-1202.	1.3	6
17	Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments. Land, 2014, 3, 693-718.	2.9	8
18	Lepidoptera-specific insecticide used to suppress gypsy moth outbreaks may benefit non-target forest Lepidoptera. Agricultural and Forest Entomology, 2014, 16, 359-368.	1.3	14

#	Article	IF	CITATIONS
19	Partitioning of \$\$alpha \$\$ α and \$\$eta \$\$ β diversity using hierarchical Bayesian modeling of species distribution and abundance. Environmental and Ecological Statistics, 2014, 21, 611-625.	3.5	8
20	Quantifying habitatâ€specific contributions to insect diversity in agricultural mosaic landscapes. Insect Conservation and Diversity, 2013, 6, 607-618.	3.0	28
21	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	5.8	121
22	Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	12.6	8
23	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
24	Does habitat heterogeneity increase farmland biodiversity?. Frontiers in Ecology and the Environment, 2011, 9, 152-153.	4.0	47
25	Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 2011, 14, 19-28.	6.4	1,899
26	Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14, 101-112.	6.4	1,279
27	Intraspecific variability in the social and genetic mating systems of prairie voles, Microtus ochrogaster. Animal Behaviour, 2011, 82, 1387-1398.	1.9	62
28	Disentangling the Drivers of Î ² Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	12.6	617
29	Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant and Soil, 2011, 341, 279-293.	3.7	23
30	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	6.4	336
31	Diversity partitioning without statistical independence of alpha and beta. Ecology, 2010, 91, 1964-1969.	3.2	64
32	Toward a unified view of diversity partitioning. Ecology, 2010, 91, 1988-1992.	3.2	55
33	Insect herbivory in an experimental agroecosystem: the relative importance of habitat area, fragmentation, and the matrix. Oikos, 2009, 118, 1477-1486.	2.7	19
34	Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic and Applied Ecology, 2008, 9, 298-307.	2.7	84
35	The spread of invasive species and infectious disease as drivers of ecosystem change. Frontiers in Ecology and the Environment, 2008, 6, 238-246.	4.0	457
36	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	3.0	64

#	Article	IF	CITATIONS
37	Structure and conservation of lepidopteran communities in managed forests of northeastern North America: a review. Canadian Entomologist, 2008, 140, 475-494.	0.8	61
38	Butterfly Abundance and Movements Among Prairie Patches: The Roles of Habitat Quality, Edge, and Forest Matrix Permeability. Environmental Entomology, 2008, 37, 897-906.	1.4	26
39	Butterfly Abundance and Movements Among Prairie Patches: The Roles of Habitat Quality, Edge, and Forest Matrix Permeability. Environmental Entomology, 2008, 37, 897-906.	1.4	10
40	Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8368-8373.	7.1	74
41	Conservation biological control and enemy diversity on a landscape scale. Biological Control, 2007, 43, 294-309.	3.0	531
42	Direct and indirect effects of habitat area and matrix composition on species interactions among flowerâ€visiting insects. Oikos, 2007, 116, 1588-1598.	2.7	47
43	Scale dependence of effective specialization: its analysis and implications for estimates of global insect species richness. Diversity and Distributions, 2007, 13, 115-125.	4.1	14
44	Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography, 2007, 16, 650-656.	5.8	144
45	Resource complementation and the response of an insect herbivore to habitat area and fragmentation. Oecologia, 2007, 153, 511-520.	2.0	36
46	Additive partitioning of rarefaction curves and species–area relationships: unifying α-, β- and γ-diversity with sample size and habitat area. Ecology Letters, 2006, 9, 923-932.	6.4	215
47	Do body size and diet breadth affect partitioning of species diversity? A test with forest Lepidoptera. Diversity and Distributions, 2006, 12, 91-99.	4.1	27
48	Spatial variation in insect community and species responses to habitat loss and plant community composition. Oecologia, 2006, 147, 510-521.	2.0	55
49	Temporal Patterns of Species Accumulation in a Survey of Lepidoptera in a Beech-Maple Forest. Biodiversity and Conservation, 2005, 14, 3393-3406.	2.6	49
50	Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography, 2004, 27, 3-12.	4.5	104
51	Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biological Conservation, 2004, 116, 9-18.	4.1	91
52	Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecological Entomology, 2003, 28, 747-757.	2.2	51
53	Determinants of lepidopteran community composition and species diversity in eastern deciduous forests: roles of season, eco-region and patch size. Oikos, 2003, 100, 134-148.	2.7	105
54	Additive Partitioning of Species Diversity across Multiple Spatial Scales: Implications for Regional Conservation of Biodiversity. Conservation Biology, 2003, 17, 488-499.	4.7	318

#	Article	IF	CITATIONS
55	Spatial Variation in Species Diversity and Composition of Forest Lepidoptera in Eastern Deciduous Forests of North America. Conservation Biology, 2003, 17, 1045-1057.	4.7	108
56	Partitioning Species Diversity across Landscapes and Regions: A Hierarchical Analysis of α, β, and γ Diversity. American Naturalist, 2003, 162, 734-743.	2.1	528
57	INTRASPECIFIC AGGREGATION DECREASES LOCAL SPECIES DIVERSITY OF ARTHROPODS. Ecology, 2003, 84, 3376-3383.	3.2	33
58	Guild Designations and Testing for Effects of Gypsy Moth (Lepidoptera: Lymantriidae) Outbreaks on Native Lepidopteran Communities: A Comment on Work and McCullough (2000): Table 1 Environmental Entomology, 2002, 31, 581-584.	1.4	2
59	EFFECTS OF TIMBER HARVEST ON FOREST LEPIDOPTERA: COMMUNITY, GUILD, AND SPECIES RESPONSES. , 2002, 12, 820-835.		110
60	Variability in soil chemistry and arbuscular mycorrhizal fungi in harvester ant nests: the influence of topography, grazing and region. Biology and Fertility of Soils, 2002, 35, 406-413.	4.3	17
61	Does variation in patch use among butterfly species contribute to nestedness at fine spatial scales?. Oikos, 2002, 97, 195-204.	2.7	37
62	The additive partitioning of species diversity: recent revival of an old idea. Oikos, 2002, 99, 3-9.	2.7	404
63	The alpha-beta-regional relationship: providing new insights into local-regional patterns of species richness and scale dependence of diversity components. Ecology Letters, 2002, 5, 433-444.	6.4	149
64	Diversity of Lepidoptera in Ohio Forests at Local and Regional Scales - How Heterogeneous is the Fauna?. Annals of the Entomological Society of America, 2001, 94, 583-591.	2.5	43
65	EFFECTS OF EXPERIMENTAL HABITAT FRAGMENTATION ON PATCH USE BY BUTTERFLIES AND SKIPPERS (LEPIDOPTERA). Ecology, 2001, 82, 1360-1370.	3.2	83
66	A CANONICAL CORRESPONDENCE ANALYSIS OF THE EFFECTS OF THEEXXON VALDEZOIL SPILL ON MARINE BIRDS. , 2001, 11, 828-839.		13
67	Effects of Experimental Habitat Fragmentation on Patch Use by Butterflies and Skippers (Lepidoptera). Ecology, 2001, 82, 1360.	3.2	9
68	Experimental effects of habitat fragmentation on rove beetles and ants: patch area or edge?. Oikos, 2000, 90, 525-538.	2.7	66
69	Harvester Ants (Pogonomyrmexspp.): Their Community and Ecosystem Influences. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 265-291.	6.7	244
70	Simulation of Topographic and Daily Variation in Colony Activity of <i>Pogonomyrmex occidentalis</i> (Hymenoptera: Formicidae) Using a Soil Temperature Model. Environmental Entomology, 1999, 28, 659-668.	1.4	16
71	Effects of Habitat Patch Size and Temperature on the Distribution and Abundance of Ground Beetles (Coleoptera: Carabidae) in an Old Field. Environmental Entomology, 1999, 28, 681-689.	1.4	21
72	Experimental effects of habitat fragmentation on old-field canopy insects: community, guild and species responses. Oecologia, 1999, 118, 371-380.	2.0	95

#	Article	IF	CITATIONS
73	The spatial distribution of termites in shortgrass steppe: a geostatistical approach. Oecologia, 1998, 114, 410.	2.0	51
74	The spatial distribution of termite activity in grazed and ungrazed Chihuahuan Desert grassland. Journal of Arid Environments, 1998, 40, 77-89.	2.4	10
75	Translating across scales: Simulating species distributions as the aggregate response of individuals to heterogeneity. Ecological Modelling, 1996, 93, 125-137.	2.5	36
76	The Distribution of Ant Colonies in a Semiarid Landscape: Implications for Community and Ecosystem Processes. Oikos, 1996, 76, 301.	2.7	66
77	Effects of the Exxon Valdez Oil Spill on Marine Bird Communities in Prince William Sound, Alaska. , 1996, 6, 828-841.		69
78	Fractal Patterns of Insect Movement in Microlandscape Mosaics. Ecology, 1995, 76, 663-666.	3.2	136
79	Individual Movements and Estimation of Population Size in Darkling Beetles (Coleoptera:) Tj ETQq1 1 0.784314	rgBT/Ove 2.8	rlock 10 Tf 50
80	Critical Thresholds in Species' Responses to Landscape Structure. Ecology, 1995, 76, 2446-2459.	3.2	591
81	Scale Effects of Vegetation on Forager Movement and Seed Harvesting by Ants. Oikos, 1994, 69, 37.	2.7	86
82	The Use of Ant Nests by Subterranean Termites in Two Semiarid Ecosystems. American Midland Naturalist, 1994, 131, 370.	0.4	6
83	The Impact of Fungi on Soil Seeds: Implications for Plants and Granivores in a Semiarid Shrub-Steppe. Ecology, 1993, 74, 2231-2239.	3.2	139
84	On Quantifying Insect Movements. Environmental Entomology, 1993, 22, 709-715.	1.4	82
85	Harvester Ant Foraging and Shrub-Steppe Seeds: Interactions of Seed Resources and Seed Use. Ecology, 1992, 73, 1768-1779.	3.2	130
86	Foraging Patterns of Pogonomyrmex occidentalis (Hymenoptera: Formicidae) in a Shrub–Steppe Ecosystem: The Roles of Temperature, Trunk Trails, and Seed Resources. Environmental Entomology, 1991, 20, 265-275.	1.4	60
87	Ant Biodiversity and Functional Roles in Fragmented Forest and Grassland Ecosystems of the Agricultural Midwest, North America. , 0, , 3-25.		4