Carine Duhayon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122933/publications.pdf

Version: 2024-02-01

101543 114465 5,176 163 36 63 citations g-index h-index papers 177 177 177 4679 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First Heterotrimetallic {3 dâ€4 dâ€4 f} Single Chain Magnet, Constructed from Anisotropic Highâ€6 Heterometallic Nodes and Paramagnetic Spacers. Chemistry - A European Journal, 2009, 15, 11808-11814.	pin 3.3	205
2	Heteroleptic Copper(I) Complexes Prepared from Phenanthroline and Bis-Phosphine Ligands. Inorganic Chemistry, 2013, 52, 12140-12151.	4.0	202
3	Enhanced Ion Anisotropy by Nonconventional Coordination Geometry: Single-Chain Magnet Behavior for a [{Fe ^{II} L} ₂ {Nb ^{IV} (CN) ₈ }] Helical Chain Compound Designed with Heptacoordinate Fe ^{II} . Journal of the American Chemical Society, 2010, 132, 6047-6056.	13.7	169
4	Electrophosphorescent homo- and heteroleptic copper(i) complexes prepared from various bis-phosphine ligands. Chemical Communications, 2007, , 3077-3079.	4.1	161
5	Study of the Luminescent and Magnetic Properties of a Series of Heterodinuclear [Zn ^{II} Ln ^{III}] Complexes. Inorganic Chemistry, 2011, 50, 5879-5889.	4.0	151
6	Designing dendrimers for ocular drug delivery. European Journal of Medicinal Chemistry, 2010, 45, 326-334.	5. 5	149
7	Preparation, Crystal Structures, and Magnetic Features for a Series of Dinuclear [Ni ^{II} Ln ^{III}] Schiff-Base Complexes: Evidence for Slow Relaxation of the Magnetization for the Dy ^{III} Derivative. Inorganic Chemistry, 2011, 50, 5890-5898.	4.0	143
8	Hetero-Metallic {3d-4f-5d} Complexes: Preparation and Magnetic Behavior of Trinuclear [(L ^{Me2} Niâ^'Ln){W(CN) ₈ }] Compounds (Ln = Gd, Tb, Dy, Ho, Er, Y;) Tj ETQq0 0 0 rgBT /C	yerlock 10 4.0	OTf 50 462 126
9	Chemistry, 2009, 48, 5820-5828. New Chiral Lanthanide Amide Ate Complexes for the Catalysed Synthesis of Scalemic Nitrogenâ€Containing Heterocycles. Chemistry - A European Journal, 2008, 14, 2189-2200.	3.3	107
10	Twoâ€Coordinate Iron(I) Complex [Fe{N(SiMe ₃) ₂ } ₂] ^{â^'} : Synthesis, Properties, and Redox Activity. Angewandte Chemie - International Edition, 2015, 54, 245-248.	13.8	95
11	Single-ion magnet behaviour of heptacoordinated Fe(<scp>ii</scp>) complexes: on the importance of supramolecular organization. Chemical Communications, 2015, 51, 3616-3619.	4.1	94
12	Diaminocarbene and Phosphonium Ylide Ligands: A Systematic Comparison of their Donor Character. Journal of the American Chemical Society, 2008, 130, 8406-8413.	13.7	91
13	Imidazoliophosphines are True Nâ€Heterocyclic Carbene (NHC)–Phosphenium Adducts. Chemistry - A European Journal, 2010, 16, 13095-13108.	3.3	90
14	Water-Soluble Group 8 and 9 Transition Metal Complexes Containing a Trihydrazinophosphaadamantane Ligand: Catalytic Applications in Isomerization of Allylic Alcohols and Cycloisomerization of (Z)-Enynols in Aqueous Medium. Advanced Synthesis and Catalysis, 2006, 348, 1671-1679.	4.3	84
15	Effect of Ligand Substitution around the Dy ^{III} on the SMM Properties of Dual-Luminescent Znâ€"Dy and Znâ€"Dyâ€"Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study. Inorganic Chemistry, 2016, 55, 4428-4440.	4.0	83
16	Analysis of the Role of Peripheral Ligands Coordinated to Zn ^{II} in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Znâ€Dyâ€Zn Singleâ€Molecule Magnets. Chemistry - A European Journal, 2015, 21, 15785-15796.	3.3	80
17	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie - International Edition, 2019, 58, 6727-6731.	13.8	73
18	Cyano-Bridged Fe(II)–Cr(III) Single-Chain Magnet Based on Pentagonal Bipyramid Units: On the Added Value of Aligned Axial Anisotropy. Journal of the American Chemical Society, 2018, 140, 7698-7704.	13.7	70

#	Article	IF	CITATIONS
19	Homoleptic Copper(I), Silver(I), and Gold(I) Bisphosphine Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 1345-1355.	2.0	69
20	Heteroleptic Cu(I) complexes containing phenanthroline-type and 1,1′-bis(diphenylphosphino)ferrocene ligands: Structure and electronic properties. Inorganica Chimica Acta, 2007, 360, 1032-1042.	2.4	67
21	An Atropoâ€Stereogenic Diphosphane Ligand with a Proximal Cationic Charge: Specific Catalytic Properties of a Palladium Complex Thereof. European Journal of Inorganic Chemistry, 2008, 2008, 2991-2999.	2.0	67
22	Pentagonal Bipyramid Fe ^{II} Complexes: Robust Isingâ€5pin Units towards Heteropolynuclear Nanomagnets. Chemistry - A European Journal, 2017, 23, 4380-4396.	3.3	67
23	Synthesis and Properties of Dendrimers Possessing the Same Fluorophore(s) Located Either Peripherally or Off-Center. Journal of Organic Chemistry, 2007, 72, 8707-8715.	3.2	65
24	Thiazolyl-phosphine hydrochloride salts: effective auxiliary ligands for ruthenium-catalyzed nitrile hydration reactions and related amide bond forming processes in water. Green Chemistry, 2013, 15, 2447.	9.0	65
25	Heptacoordinated Nickel(II) as an Ising-Type Anisotropic Building Unit: Illustration with a Pentanuclear [(NiL) ₃ {W(CN) ₈ } ₂] Complex. Inorganic Chemistry, 2013, 52, 2283-2285.	4.0	65
26	P(CH)P Pincer Rhodium(I) Complexes: The Key Role of Electron-Poor Imidazoliophosphine Extremities. Inorganic Chemistry, 2013, 52, 48-58.	4.0	61
27	1-D hydrogen-bonded organization of hexanuclear $\{3d-4f-5d\}$ complexes: evidence for slow relaxation of the magnetization for $[\{LMe2Ni(H2O)Ln(H2O)4.5\}2\{W(CN)8\}2]$ with Ln = Tb and Dy. CrystEngComm, 2009, 11, 2078.	2.6	58
28	Supramolecular control over recognition and efficient detection of picric acid. Chemical Communications, 2014, 50, 12061-12064.	4.1	58
29	A Diaminocarbene–Phosphonium Ylide: Direct Access to C,C Chelating Ligands. Angewandte Chemie - International Edition, 2007, 46, 6313-6315.	13.8	53
30	Heteroleptic Silver(I) Complexes Prepared from Phenanthroline and Bis-phosphine Ligands. Inorganic Chemistry, 2013, 52, 14343-14354.	4.0	53
31	Nickel(ii) complexes of the new pincer-type unsymmetrical ligands PIMCOP, PIMIOCOP, and NHCCOP: versatile binding motifs. Chemical Communications, 2012, 48, 10446.	4.1	52
32	Magneto-structural variety of new 3d–4f–4(5)d heterotrimetallic complexes. Dalton Transactions, 2015, 44, 16713-16727.	3.3	51
33	Flexible Diphosphine Ligands with Overall Charges of 0, $+1$, and $+2$: Critical Role of the Electrostatics in Favoring Trans over Cis Coordination. Inorganic Chemistry, 2011, 50, 10810-10819.	4.0	50
34	Hexacyanidometalate molecular chemistry, part III: di-, tri-, tetra-, hexa- and hepta-nuclear chromium–nickel complexes: Control of spin, structural anisotropy, intra- and inter-molecular exchange couplings. Inorganica Chimica Acta, 2008, 361, 3505-3518.	2.4	46
35	BH, CH, and BC Bond Activation: The Role of Two Adjacent Agostic Interactions. Angewandte Chemie - International Edition, 2014, 53, 7569-7573.	13.8	46
36	Towards the Limit of Atropochiral Stability: Hâ€MIOP, an Nâ€Heterocyclic Carbene Precursor and Cationic Analogue of the Hâ€MOP Ligand. Chemistry - A European Journal, 2011, 17, 5110-5115.	3.3	39

#	Article	IF	Citations
37	Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of Ni ^{II} â€"Ln ^{III} â€"W ^V Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes. Inorganic Chemistry, 2016, 55, 12158-12171.	4.0	39
38	Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chemical Society Reviews, 2022, 51, 3280-3313.	38.1	38
39	A Robust Nanoporous Supramolecular Metal–Organic Framework Based on Ionic Hydrogen Bonds. Chemistry - A European Journal, 2014, 20, 11690-11694.	3.3	36
40	Developing the Kharasch Reaction in Aqueous Media: Dinuclear Group 8 and 9 Catalysts Containing the Bridging Cage Ligand Tris(1,2-dimethylhydrazino)diphosphane. European Journal of Inorganic Chemistry, 2008, 2008, 786-794.	2.0	35
41	Self-assembly of fullerene-rich nanostructures with a stannoxane core. Chemical Communications, 2007, , 516-518.	4.1	34
42	Hexasilylated Total Carbomer of Benzene. Angewandte Chemie - International Edition, 2007, 46, 4337-4341.	13.8	34
43	Di- and Triheteronuclear Cuâ^'Gd and Cuâ^'Gdâ^'Cu Complexes with Dissymmetric Double Bridge. Inorganic Chemistry, 2008, 47, 6444-6451.	4.0	34
44	Dissimilar supramolecular organization for the heterotrimetallic assemblage [$\{LNiLn\}\{W(CN)8\}$] with Ln=Y and La (L=Schiff-base derivative). Comptes Rendus Chimie, 2008, 11, 1200-1206.	0.5	33
45	Synthesis and Photophysical Properties of Copper(I) Complexes Obtained from 1,10â€Phenanthroline Ligands with Increasingly Bulky 2,9â€Substituents. European Journal of Inorganic Chemistry, 2010, 2010, 164-173.	2.0	33
46	Carbeneâ€Stabilized Phosphenium Oxides and Sulfides. Chemistry - A European Journal, 2012, 18, 16153-16160.	3.3	33
47	On the Pâ€Coordinating Limit of NHC–Phosphenium Cations toward Rh ^I Centers. Chemistry - A European Journal, 2012, 18, 7705-7714.	3.3	33
48	Efficient Phosphorus Catalysts for the Halogenâ€Exchange (Halex) Reaction. Advanced Synthesis and Catalysis, 2008, 350, 2677-2682.	4.3	32
49	Charge Effects in PCP Pincer Complexes of Ni ^{ll} bearing Phosphinite and Imidazol(i)ophosphine Coordinating Jaws: From Synthesis to Catalysis through Bonding Analysis. Chemistry - A European Journal, 2015, 21, 17403-17414.	3.3	32
50	Concomitant emergence of circularly polarized luminescence and single-molecule magnet behavior in chiral-at-metal Dy complex. Inorganic Chemistry Frontiers, 2020, 7, 4527-4534.	6.0	32
51	Thiazolyl Phosphine Ligands for Copper-Catalyzed Arylation and Vinylation of Nucleophiles in Organic and Aqueous Media. Organometallics, 2008, 27, 5733-5736.	2.3	30
52	Tuning of the Emission Efficiency and HOMO–LUMO Band Gap for Ester-Functionalized {Al(salophen)(H ₂ O) ₂ } ⁺ Blue Luminophors. Inorganic Chemistry, 2012, 51, 1309-1318.	4.0	30
53	Modular Assembling of [Zr(C 2O 4) 4] 4â^' and [DabcoH 2] 2+ Units in Supramolecular Hybrid Architectures Including an Open Framework with Reversible Sorption Properties (Dabco =) Tj ETQq1 1 0.784314	rg & Ђ/Оvе	erloodk 10 Tf 5
54	Atropochiral (C,C)-chelating NHC-ylide ligands: synthesis and resolution of palladium(ii) complexes thereof. Dalton Transactions, 2009, , 7196.	3.3	29

#	Article	IF	CITATIONS
55	Synthesis, Characterization and Combined Superoxide Dismutase and Catalase Activities of Manganese Complexes of 1,4â€Bis(salicylidenamino)butanâ€2â€ol. European Journal of Inorganic Chemistry, 2010, 2010, 965-974.	2.0	28
56	From Heptacoordinated Cr ^{III} Complexes with Cyanide or Isothiocyanate Apical Groups to 1D Heterometallic Assemblages with Allâ€Pentagonalâ€Bipyramid Coordination Geometries. European Journal of Inorganic Chemistry, 2018, 2018, 340-348.	2.0	28
57	Synthesis, Structural Characterization, and Magnetic Properties of a Copper–Gadolinium Complex Derived from a Hydroxybenzohydrazide Ligand. Inorganic Chemistry, 2014, 53, 2181-2187.	4.0	27
58	Bidentate Iminophosphorane-NHC Ligand Derived from the Imidazo[1,5- <i>a</i>)pyridin-3-ylidene Scaffold. Organometallics, 2018, 37, 4726-4735.	2.3	26
59	Promoting Role of [Ptl2(CO)]2 in the Iridium-Catalyzed Methanol Carbonylation to Acetic Acid and Its Interaction with Involved Iridium Species. Organometallics, 2006, 25, 5894-5905.	2.3	25
60	The Intricate Assembling of <i>gem</i> â€Diphenylpropargylic Units. European Journal of Organic Chemistry, 2008, 2008, 5144-5156.	2.4	25
61	First magnets based on thiocyanato-bridges. Chemical Communications, 2012, 48, 10028.	4.1	25
62	First binuclear Cr(III)–Mn(III) oxalato-bridged complexes: Synthesis, crystal structures and magnetic properties. Polyhedron, 2009, 28, 1688-1693.	2.2	24
63	Exploring structural effects of levoglucosenone derived chiral auxiliaries in asymmetric Diels–Alder cycloadditions. Tetrahedron, 2007, 63, 241-251.	1.9	23
64	Palladium(<scp>ii</scp>) pincer complexes of a <i>C</i> , <i>C</i> , <i>C</i> , <i>HC, diphosphonium bis(ylide) ligand. Dalton Transactions, 2019, 48, 1709-1721.</i>	3.3	23
65	A ferromagnetic Ni(<scp>ii</scp>)–Cr(<scp>iii</scp>) single-chain magnet based on pentagonal bipyramidal building units. Inorganic Chemistry Frontiers, 2020, 7, 1503-1511.	6.0	23
66	Cationic PCP and PCN NHC Core Pincer-Type Mn(I) Complexes: From Synthesis to Catalysis. Organometallics, 2021, 40, 231-241.	2.3	23
67	Driving the Assembling of Zirconium Tetraoxalate Metallotectons and Benzimidazolium Cations: From Three Dimensional Hydrogen-Bonded Compact Architectures to Open-Frameworks. Crystal Growth and Design, 2010, 10, 4906-4919.	3.0	22
68	Organotin chemistry for the preparation of fullerene-rich nanostructures. Journal of Materials Chemistry, 2008, 18, 1547.	6.7	21
69	Substantial exchange coupling for {Mo–NCS–M} combination: illustration for 1-D [{Mo(NCS)6}{NiL}2(NCS)]n. Chemical Communications, 2010, 46, 7519.	4.1	21
70	Self-Assembly of Zr(C ₂ O ₄) ₄ ^{4â€"} Metallotectons and Bisimidazolium Cations: Influence of the Dication on H-Bonded Framework Dimensionality and Material Potential Porosity. Crystal Growth and Design, 2011, 11, 5424-5433.	3.0	21
71	[K2Mn5{Mo(CN)7}3]: an open framework magnet with four Tc conversions orchestrated by guests and thermal history. New Journal of Chemistry, 2011, 35, 1211.	2.8	21
72	Does the Sign of the Cu–Gd Magnetic Interaction Depend on the Number of Atoms in the Bridge?. Chemistry - A European Journal, 2016, 22, 2171-2180.	3.3	21

#	Article	IF	Citations
73	An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles. New Journal of Chemistry, 2010, 34, 547.	2.8	20
74	Diversified Strategies for the Synthesis of Bifunctional Dendrimeric Structures. European Journal of Organic Chemistry, 2013, 2013, 5414-5422.	2.4	20
75	Imination reactions of free and coordinated 2-diphenylphosphino-1-phenyl-phospholane: Access to regioisomeric ruthenium(ii) complexes containing novel iminophosphorane–phosphine ligands. New Journal of Chemistry, 2006, 30, 1295-1306.	2.8	19
76	Mononuclear Cu and dinuclear Cu–Ln complexes of benzimidazole based ligands including N and O donors: Syntheses, characterization, X-ray molecular structures and magnetic properties. Polyhedron, 2010, 29, 2111-2119.	2.2	19
77	NHC Core Phosphonium Ylide-based Palladium(II) Pincer Complexes: The Second Ylide Extremity Makes the Difference. Inorganic Chemistry, 2020, 59, 7082-7096.	4.0	19
78	Quasilinear 3d-metal(<scp>i</scp>) complexes [KM(N(Dipp)SiR ₃) ₂] (M = Cr–Co) – structural diversity, solution state behaviour and reactivity. Dalton Transactions, 2021, 50, 4890-4903.	3.3	19
79	Varying the metal/metal ratio in related Cu–Ca complexes. Polyhedron, 2007, 26, 4209-4215.	2.2	18
80	Oligomeric and polymeric organizations of potassium salts with compartmental Schiff-base complexes as ligands. CrystEngComm, 2011, 13, 5908.	2.6	18
81	1,4â€Dialkynylbutatrienes: Synthesis, Stability, and Perspectives in the Chemistry of <i>carbo</i> \$\text{i} \text{\$\text{\$\frac{1}{3}\$}\$}\$\$ & European Journal, 2011, 17, 5086-5100.	3.3	18
82	P-oxidation of gem-dicationic phosphines. RSC Advances, 2013, 3, 20391.	3.6	18
83	Binuclear CuLn complexes (LnIII= Gd, Tb, Dy) of alcohol-functionalized bicompartmental Schiff-base ligand. Hydrogen bonding and magnetic behaviors. Inorganica Chimica Acta, 2016, 439, 24-29.	2.4	18
84	Direct Access to Palladium(II) Complexes Based on Anionic <i>C</i> , <i>C</i> , <i>C</i> -Phosphonium Ylide Core Pincer Ligand. Inorganic Chemistry, 2021, 60, 12116-12128.	4.0	18
85	Stereoselective double addition of chiral alkynyl-zincs to cobalt-stabilized acetylenedicarbaldehyde. Tetrahedron Letters, 2006, 47, 1047-1050.	1.4	17
86	Fullerene Derivatives Functionalized with Diethylaminoâ€Substituted Conjugated Oligomers: Synthesis and Photoinduced Electron Transfer. Chemistry - A European Journal, 2009, 15, 8825-8833.	3.3	17
87	Co-crystallization of coordination compounds through second-coordination sphere interactions. CrystEngComm, 2011, 13, 3756.	2.6	17
88	μ ₃ ―vs. μâ€Hydroxido Bridges – Peripheral Function Controls the Nuclearity of Hydroxidoâ€Bridged Copper(II) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 5729-5740.	2.0	16
89	Hydrogenâ€Bonded Openâ€Framework with Pyridylâ€Decorated Channels: Straightforward Preparation and Insight into Its Affinity for Acidic Molecules in Solution. Chemistry - A European Journal, 2017, 23, 11818-11826.	3.3	16
90	Copper(I) complexes of chelating imidazolo- and imidazolio-diphosphines. Journal of Organometallic Chemistry, 2015, 776, 149-152.	1.8	15

#	Article	IF	Citations
91	Biâ€Compartmental Schiffâ€Base with Peripheral Ester Functionalization: Synthesis and Magnetic Behavior of Bimetallic Znâ€Ln Complexes (Ln = Dy, Tb, Gd). European Journal of Inorganic Chemistry, 2016, 2016, 4988-4995.	2.0	15
92	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie, 2019, 131, 6799-6803.	2.0	15
93	Structure and Properties of Dinuclear Manganese(III) Complexes with Pentaanionic Pentadentate Ligands Including Alkoxo, Amido, and Phenoxo Donors. Inorganic Chemistry, 2007, 46, 6902-6910.	4.0	14
94	Versatile Pdâ€Catalyzed CH Oxidative Cyclization of Homoallylhydrazones to Pyrazolines and Tetrahydropyridazines. ChemCatChem, 2013, 5, 3014-3021.	3.7	14
95	Role of the kinetic template effect in the syntheses of non symmetric Schiff base complexes. Polyhedron, 2013, 52, 1065-1072.	2.2	14
96	Extended H-bond networks based on guanidinium H-donors and $[Zr(A)4]4\hat{a}^{-1}$ H-acceptor units: modulation of the assemblage and guest accessible volume by chemical design (A = oxalate,) Tj ETQq0 0 0 rgBT $[A]$	∕Ov 2e8 lock	1017#f 50 537
97	Ethionamide biomimetic activation and an unprecedented mechanism for its conversion into active and non-active metabolites. Organic and Biomolecular Chemistry, 2016, 14, 8848-8858.	2.8	14
98	Steric/i€â€Electronic Insulation of the <i>carbo</i> â€Benzene Ring: Dramatic Effects of <i>tert</i> â€Butyl versus Phenyl Crowns on Geometric, Chromophoric, Redox, and Magnetic Properties. Chemistry - A European Journal, 2018, 24, 10699-10710.	3.3	14
99	Molybdenum(III) Thiocyanate- and Selenocyanate-Based One-Dimensional Heteronuclear Polymers: Coordination Affinity-Controlled Assemblage of Mixed Spin and Mixed Valence Derivatives with Ni(II) and Co(II/III). Inorganic Chemistry, 2020, 59, 7603-7613.	4.0	14
100	Bis-Ylide Ligands from Acyclic Proximal Diphosphonium Precursors. European Journal of Inorganic Chemistry, 2012, 2012, 4057-4064.	2.0	13
101	Structural determinations of carbamato-bridging ligands derived from atmospheric CO2 in 3d–4f complexes. Polyhedron, 2015, 89, 213-218.	2.2	13
102	Lipidic <i>Carbo </i> -benzenes: Molecular Probes of Magnetic Anisotropy and Stacking Properties of α-Graphyne. Journal of Organic Chemistry, 2017, 82, 925-935.	3.2	13
103	Synthesis and Stereochemical Assignments ofcis- andtrans-1-Amino- 4-ethylcyclohexa-2,5-diene as Models for Amiclenomycin. European Journal of Organic Chemistry, 2002, 2002, 736-744.	2.4	12
104	An unprecedented co-crystal including a cis-high-spin and a trans-low-spin Fell complex molecule. Chemical Communications, 2007, , 5223.	4.1	12
105	Vicinal diphosphoniums: electrostatic repulsion under covalent constraint. Dalton Transactions, 2009, , 8493.	3.3	12
106	Synthesis and Crystal Structures of Various Phases of the Microporous Three-Dimensional Coordination Polymer $[Zr(OH) \cdot Sub \cdot 2 \cdot sub \cdot (C \cdot sub \cdot 2 \cdot sub \cdot O \cdot sub \cdot 4 \cdot sub \cdot)] \cdot sub \cdot (i \cdot n \cdot i \cdot$	3.0	12
107	From N-sulfonyl, C-homoallyl-hydrazones to pyrazole and pyridazine (N2)-heterocycles: the ultimate aromatization process. Tetrahedron, 2014, 70, 4957-4968.	1.9	12
108	Use of azido ligands in the syntheses of different homo- and hetero-complexes. Polyhedron, 2016, 111, 101-108.	2.2	12

#	Article	IF	Citations
109	Reactions of a series of ZnL, CuL and NiL Schiff base and non-Schiff base complexes with MCl ₂ salts (M = Cu, Ni, Mn): syntheses, structures, magnetic properties and DFT calculations. New Journal of Chemistry, 2018, 42, 3683-3691.	2.8	12
110	Syntheses, Structures, and Magnetic Properties of Symmetric and Dissymmetric Esterâ€Functionalized 3dâ€4f Schiff Base Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 66-73.	2.0	12
111	Structure and bonding in a cyclobutyl tris(pyrazolyl)boratoniobium complex and the variation in agostic behaviour with ring size in the series TpMe2NbCl(c-CnH2n \hat{a} ° 1)(MeCî€,CMe), n = $3\hat{a}$ €"6. Dalton Transactions, 2006, , 2362-2367.	3.3	11
112	Structure and Properties of Copper(II), Manganese(III), and Iron(III) Complexes with Potentially Pentaanionic Heptadentate Ligands Including Alkoxido, Amido, and Phenoxido Donors. European Journal of Inorganic Chemistry, 2009, 2009, 5483-5493.	2.0	11
113	N-Cyclopropenio-imidazol-2-ylidene: An N-heterocyclic carbene bearing an N-cationic substituent. Chemical Communications, 2020, 56, 3305-3308.	4.1	11
114	Self assembly of a FeIII(L) complex with octacyano metallates [MIV(CN)8]4â^ (L=pentadentate) Tj ETQq0 0 0 rgB 2011, 372, 403-406.	T /Overlo 2.4	ck 10 Tf 50 5 10
115	3D and 2D supramolecular assemblies and thermotropic behaviour of a carbo-benzenic mesogen. Chemical Communications, 2017, 53, 5902-5905.	4.1	10
116	Synthesis of functionalized dipyrrolyldiketones, precursors of quinoxaline-containing macrocycles. Tetrahedron Letters, 2004, 45, 7363-7365.	1.4	9
117	(Î- ⁶ -Arene)tricarbonylchromium and Ferrocene Complexes Linked to Binaphthyl Derivatives. Organometallics, 2007, 26, 6139-6149.	2.3	9
118	Ground State Electronic Interactions in Macrocyclic Fullerene Bisâ€Adducts Functionalized with Bridging Conjugated Oligomers. European Journal of Organic Chemistry, 2009, 2009, 5779-5787.	2.4	9
119	K2Re(NCS)6: A weak ferromagnet. Comptes Rendus Chimie, 2012, 15, 924-928.	0.5	9
120	Electrostatic Control of Pd2+ â†' Ag+ Transmetalation of a Bis-Imidazoliophosphine Ligand. Organometallics, 2013, 32, 4054-4057.	2.3	9
121	An Ionic Dysprosium Complex Made of a Hexanuclear Dy ₆ Cationic Cluster and a Mononuclear Dy Anionic Unit. European Journal of Inorganic Chemistry, 2014, 2014, 4745-4749.	2.0	9
122	Phosphenium Versus Pro-Phosphide Character of P- <i>tert-</i> butyl-dicyclopropeniophosphine: Zwitterionic Palladate Complexes of a Dicationic Phosphido Ligand. Inorganic Chemistry, 2016, 55, 11018-11027.	4.0	9
123	Methinylogation Approach in Chiral Pharmacophore Design: from Alkynyl―to Allenylâ€carbinol Warheads against Tumor Cells. ChemMedChem, 2018, 13, 1711-1722.	3.2	9
124	Effects of the Exchange Coupling on Dynamic Properties in a Series of CoGdCo Complexes. Inorganic Chemistry, 2019, 58, 756-768.	4.0	9
125	Trinuclear Cyanidoâ€Bridged [Cr ₂ Fe] Complexes: To Be or not to Be a Singleâ€Molecule Magnet, a Matter of Straightness. Chemistry - A European Journal, 2021, 27, 15484-15495.	3.3	9
126	Diverse <i>C</i> -Coordination Modes of NHC-Tricyclohexylphosphonium Ylide Ligands in Palladium(II) Complexes. Organometallics, 2022, 41, 456-466.	2.3	9

#	Article	IF	CITATIONS
127	Design of neutral, mono- or di-cationic water-soluble trihydrazidophosphoradamantanes. Tetrahedron Letters, 2006, 47, 2687-2690.	1.4	8
128	Antiferromagnetic Cu–Gd interactions through an oxime bridge. Dalton Transactions, 2014, 43, 11388-11396.	3.3	8
129	On the Theme of Amidiniophosphines: Synthesis and Reactivity of Benzo-, Diimidazolo-Tris-Annelated P-Aminodiazaphosphepines. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 789-802.	1.6	8
130	Hydrogen-bonded supramolecular architectures based on [Zr(C ₂ O ₄) ₄] ^{4â^²} anion and protonated polyamine cations. CrystEngComm, 2017, 19, 1633-1642.	2.6	8
131	Can novel dinuclear Ni–Gd complexes give supplementary information on the Ni–Gd magnetic interaction?. Polyhedron, 2015, 96, 51-56.	2.2	7
132	Supramolecular open-framework architectures based on dicarboxylate H-bond acceptors and polytopic cations with three/four N–H ⁺ donor units. CrystEngComm, 2015, 17, 8906-8914.	2.6	7
133	<i>Carbo</i> â€biphenyls and <i>Carbo</i> â€terphenyls: Oligo(phenylene ethynylene) Ring <i>Carbo</i> â€mers. Angewandte Chemie - International Edition, 2018, 57, 5640-5644.	13.8	7
134	Versatile reactivity of 3-chloro-2-phenyl-isoindole-1-carbaldehyde: hydrolysis and alkylating rearrangement to 1-amino-4-isochromanones. Tetrahedron, 2012, 68, 6908-6913.	1.9	6
135	Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMn ^{III} complex modeling the active site in catalase. Dalton Transactions, 2014, 43, 17145-17155.	3.3	6
136	A Push–Pull Pd ^{II} Complex with a Ternary Pd–P–C ⁺ Accepting End and a Key Nâ€Heterocyclic Carbene–ImidÂazoliophosphine Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 313-321.	2.0	6
137	Core carbo â€mer of an Extended Tetrathiafulvalene: Redoxâ€Controlled Reversible Conversion to a carbo â€Benzenic Dication. Chemistry - A European Journal, 2020, 26, 10707-10711.	3.3	6
138	An Efficient and Easy Synthesis of Tetrasubstituted 2,2′:6′,2″-Terpyridines. Synthetic Communications, 2012, 42, 2763-2771.	2.1	5
139	Thiazoyl phosphines. Design, reactivity, and complexation. Dalton Transactions, 2016, 45, 9695-9703.	3.3	5
140	The Forgotten Nitroaromatic Phosphines as Weakly Donating Pâ€ligands: An <i>N</i> â€Aryl â€benzimidazolyl Series in RhCl(CO) Complexes . Chemistry - an Asian Journal, 2017, 12, 2845-2856.	3.3	5
141	Efficient synthesis and solid state analysis of 3-(1H-pyrrol-2-yl)quinoxalin-2(1H)-one and 2-(1H-pyrrol-2-yl)-1H-benzo[d]imidazole from pyrrolo-2-ylglyoxyl acid. Tetrahedron Letters, 2008, 49, 3749-3751.	1.4	4
142	A new cyanido-bridged [{C L}2(\hat{l}^{1} 4-NC)2MoIV(CN)6] pentanuclear complex (L2 \hat{a}^{2} =bicompartmental) Tj ETQq0 0 Chemistry, 2011, 64, 93-104.	0 rgBT /Ov 2.2	erlock 10 Tf 4
143	Further Insights into the Oxidative Pathway of Thiocarbonyl-Type Antitubercular Prodrugs: Ethionamide, Thioacetazone, and Isoxyl. Chemical Research in Toxicology, 2021, 34, 1879-1889.	3.3	4
144	On the peculiar reactivity of a C,N-annelated isoindole core. Turkish Journal of Chemistry, 2014, 38, 121-126.	1.2	3

#	Article	IF	Citations
145	First Evidence of 1,3-Bis-indolylallenes: Generation by a Sequential Double Nucleophilic Process from Ynones. Synthetic Communications, 2015, 45, 253-261.	2.1	3
146	<i>Carbo</i> â€biphenyls and <i>Carbo</i> â€terphenyls: Oligo(phenylene ethynylene) Ring <i>Carbo</i> â€mers. Angewandte Chemie, 2018, 130, 5742-5746.	2.0	3
147	[KCl3{H2dabco}]: A Unique 3-D Charge-Assisted Hydrogen-Bonded Hybrid Network of Anionic KCl3 Chains and Organic Cations. Journal of Chemical Crystallography, 2009, 39, 225-227.	1.1	2
148	Synthesis, X-ray crystal structures, optical properties and modelling data of neutral bis(1,2-dithiolene) nickel complexes of the "non-cyclic SR―family. New Journal of Chemistry, 2012, 36, 2033.	2.8	2
149	Selective access to <i>p</i> -dialkyl- <i>carbo</i> -benzenes from a [6]pericyclynedione: the <i>n</i> -butyl nucleophile model for a metal switch study. Canadian Journal of Chemistry, 2017, 95, 454-459.	1.1	2
150	Role of the kinetic template effect in the preparation of an original copper complex. Polyhedron, 2018, 153, 158-162.	2.2	2
151	Expanding the carbo â€Benzene Chemical Space for Electronâ€Accepting Ability: Trifluorotolyl/Tertiobutyl Substitution Balance. Helvetica Chimica Acta, 2019, 102, e1900049.	1.6	2
152	Cyclopropenylidenephosphoranes: Rearrangement to Azetidinylidene-Methylphosphoniums. Journal of Organic Chemistry, 2020, 85, 7452-7458.	3.2	2
153	Linear and nonlinear optical properties of a quadrupolar carbo-benzene and its benzenic parent: The carbo-merization effect. Dyes and Pigments, 2021, 188, 109133.	3.7	2
154	Carbo â€mer of Barrelene: A Rigid 3Dâ€Carbonâ€Expanded Molecular Barrel. Chemistry - A European Journal, 2021, 27, 9286-9291.	3.3	2
155	Structural determinations and magnetic properties of a "chiral at metal―complex and its resulting [Cu–Ln] ₂ compounds. Dalton Transactions, 2022, 51, 2805-2814.	3.3	2
156	Synthesis and characterization of dendritic structures incorporating phosphorus, sulfur, and silicon. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 411-416.	1.6	1
157	Reactivity vs. Stability of Cyclopropenium Substituted Phosphonium Salts. European Journal of Inorganic Chemistry, 2019, 2019, 3982-3989.	2.0	1
158	Discrete versus 1D compounds based on pentagonal bipyramid coordination geometries: a matter of solubility?. European Journal of Inorganic Chemistry, 0, , .	2.0	1
159	Cu-Ln complexes involving non-symmetrical ligands able to introduce asymmetric centres in the vicinity of Ln ions. Polyhedron, 2022, 224, 116015.	2.2	1
160	Inside Cover: On the P-Coordinating Limit of NHC-Phosphenium Cations toward RhICenters (Chem. Eur.) Tj ETQq	0 <u>3 3</u> rgB ⁻	「 Qverlock 10
161	Tri- and pentanuclear NCS-bridged [Molll–Cull] cluster compounds: Crystal structures and magnetic properties. Polyhedron, 2013, 65, 136-140.	2.2	0
162	The search for formal electrostatic effects on molecular conformation and crystal packing: crystal structure of $2,2\hat{a}\in^2\hat{a}\in^2$ -disubstituted (HversusPPh2) $1,1\hat{a}\in^2$ -(1,2-phenylene)bis(3-methyl-1H-imidazol-3-ium) bis(trifluoromethanesulfonate). Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 198-202.	0.5	0

#	Article	IF	CITATIONS
163	A Push-Pull PdIIComplex with a Ternary Pd-P-C+Accepting End and a Key N-Heterocyclic Carbene-ImidÂazoliophosphine Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 295-295.	2.0	O