
Paolo Tortora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathological ATX3 Expression Induces Cell Perturbations in E. coli as Revealed by Biochemical and Biophysical Investigations. International Journal of Molecular Sciences, 2021, 22, 943.	4.1	6
2	The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers, 2021, 13, 707.	3.7	22
3	Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans. Nanomaterials, 2021, 11, 1551.	4.1	7
4	Methacycline displays a strong efficacy in reducing toxicity in a SCA3 Caenorhabditis elegans model. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 279-290.	2.4	3
5	A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment. Talanta, 2018, 178, 955-961.	5.5	57
6	Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences, 2018, 19, 2677.	4.1	103
7	A fast and straightforward procedure for vault nanoparticle purification and the characterization of its endocytic uptake. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2254-2260.	2.4	8
8	Protein Environment: A Crucial Triggering Factor in Josephin Domain Aggregation: The Role of 2,2,2-Trifluoroethanol. International Journal of Molecular Sciences, 2018, 19, 2151.	4.1	3
9	Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	2.5	47
10	Epigallocatechin-3-gallate and related phenol compounds redirect the amyloidogenic aggregation pathway of ataxin-3 towards non-toxic aggregates and prevent toxicity in neural cells and Caenorhabditis elegans animal model. Human Molecular Genetics, 2017, 26, 3271-3284.	2.9	21
11	The polyglutamine protein ataxin-3 enables normal growth under heat shock conditions in the methylotrophic yeast Pichia pastoris. Scientific Reports, 2017, 7, 13417.	3.3	0
12	Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. International Journal of Nanomedicine, 2017, Volume 12, 2517-2530.	6.7	108
13	How Epigallocatechinâ€3â€gallate and Tetracycline Interact with the Josephin Domain of Ataxinâ€3 and Alter Its Aggregation Mode. Chemistry - A European Journal, 2015, 21, 18383-18393.	3.3	17
14	The Toxic Effects of Pathogenic Ataxin-3 Variants in a Yeast Cellular Model. PLoS ONE, 2015, 10, e0129727.	2.5	9
15	Peptide-Nanoparticle Ligation Mediated by <i>Cutinase</i> Fusion for the Development of Cancer Cell-Targeted Nanoconjugates. Bioconjugate Chemistry, 2015, 26, 680-689.	3.6	16
16	Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model. Human Molecular Genetics, 2014, 23, 6542-6552.	2.9	37
17	Immobilization of carboxypeptidase from Sulfolobus solfataricuson magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnology, 2014, 14, 82.	3.3	12
18	Interactions of ataxin-3 with its molecular partners in the protein machinery that sorts protein aggregates to the aggresome. International Journal of Biochemistry and Cell Biology, 2014, 51, 58-64.	2.8	18

#	Article	IF	CITATIONS
19	Biotechnological approaches toward nanoparticle biofunctionalization. Trends in Biotechnology, 2014, 32, 11-20.	9.3	107
20	A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie, 2014, 97, 49-59.	2.6	12
21	Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. Journal of Controlled Release, 2014, 196, 184-196.	9.9	99
22	Orientationâ€Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 3121-3125.	13.8	39
23	The conformational ensemble of the disordered and aggregation-protective 182–291 region of ataxin-3. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5236-5247.	2.4	14
24	Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomaterials Science, 2013, 1, 728.	5.4	21
25	Different ataxin-3 amyloid aggregates induce intracellular Ca 2+ deregulation by different mechanisms in cerebellar granule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3155-3165.	4.1	22
26	A Hydrophobic Gold Surface Triggers Misfolding and Aggregation of the Amyloidogenic Josephin Domain in Monomeric Form, While Leaving the Oligomers Unaffected. PLoS ONE, 2013, 8, e58794.	2.5	24
27	Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain. PLoS ONE, 2013, 8, e67961.	2.5	66
28	Carboxypeptidase Ss1. , 2013, , 1608-1611.		0
29	Temperature profoundly affects ataxin-3 fibrillogenesis. Biochimie, 2012, 94, 1026-1031.	2.6	8
30	The Relationship between Aggregation and Toxicity of Polyglutamine-Containing Ataxin-3 in the Intracellular Environment of Escherichia coli. PLoS ONE, 2012, 7, e51890.	2.5	20
31	The role of the central flexible region on the aggregation and conformational properties of human ataxinâ€3. FEBS Journal, 2012, 279, 451-463.	4.7	19
32	Siteâ€Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 496-499.	13.8	66
33	The mechanism of the polynucleotide phosphorylase-catalyzed arsenolysis of ADP. Biochimie, 2011, 93, 624-627.	2.6	7
34	A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation. PLoS ONE, 2011, 6, e18789.	2.5	57
35	Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale, 2011, 3, 387-390.	5.6	41
36	Multiple Presentation of Scfv800E6 on Silica Nanospheres Enhances Targeting Efficiency Toward HER-2 Receptor in Breast Cancer Cells. Bioconjugate Chemistry, 2011, 22, 2296-2303.	3.6	11

#	Article	IF	CITATIONS
37	Highly efficient production of anti-HER2 scFv antibody variant for targeting breast cancer cells. Applied Microbiology and Biotechnology, 2011, 91, 613-621.	3.6	36
38	Uniform Lipopolysaccharide (LPS)‣oaded Magnetic Nanoparticles for the Investigation of LPS–TLR4 Signaling. Angewandte Chemie - International Edition, 2011, 50, 622-626.	13.8	44
39	Site-Specific Mutation of <i>Staphylococcus aureus</i> VraS Reveals a Crucial Role for the VraR-VraS Sensor in the Emergence of Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2011, 55, 1008-1020.	3.2	36
40	Polynucleotide Phosphorylase and Mitochondrial ATP Synthase Mediate Reduction of Arsenate to the More Toxic Arsenite by Forming Arsenylated Analogues of ADP and ATP. Toxicological Sciences, 2010, 117, 270-281.	3.1	45
41	Single-Domain Protein A-Engineered Magnetic Nanoparticles: Toward a Universal Strategy to Site-Specific Labeling of Antibodies for Targeted Detection of Tumor Cells. ACS Nano, 2010, 4, 5693-5702.	14.6	77
42	Interaction of selected divalent metal ions with human ataxin-3 Q36. Journal of Biological Inorganic Chemistry, 2009, 14, 1175-1185.	2.6	19
43	Proteomic and biochemical analyses unveil tight interaction of ataxin-3 with tubulin. International Journal of Biochemistry and Cell Biology, 2009, 41, 2485-2492.	2.8	21
44	Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis. Biochemical and Biophysical Research Communications, 2009, 388, 222-227.	2.1	15
45	A combined approach of mass spectrometry, molecular modeling, and siteâ€directed mutagenesis highlights key structural features responsible for the thermostability of <i>Sulfolobus solfataricus</i> carboxypeptidase. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1843-1852.	2.6	6
46	Regulation of Escherichia coli Polynucleotide Phosphorylase by ATP. Journal of Biological Chemistry, 2008, 283, 27355-27359.	3.4	30
47	Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. International Journal of Biochemistry and Cell Biology, 2007, 39, 966-977.	2.8	20
48	Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie, 2007, 89, 145-157.	2.6	47
49	Avidin Decorated Core–Shell Nanoparticles for Biorecognition Studies by Elastic Light Scattering. ChemBioChem, 2007, 8, 1021-1028.	2.6	19
50	The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 194-203.	2.4	34
51	Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie, 2006, 88, 151-161.	2.6	73
52	Ataxin-3 is subject to autolytic cleavage. FEBS Journal, 2006, 273, 4277-4286.	4.7	27
53	Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 563-572.	2.3	11
54	A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Research, 2004, 32, 1006-1017.	14.5	32

#	Article	IF	CITATIONS
55	Properties of Recombinant Human Cytosolic Sialidase HsNEU2. Journal of Biological Chemistry, 2004, 279, 3169-3179.	3.4	72
56	Polynucleotide phosphorylase-based photometric assay for inorganic phosphate. Analytical Biochemistry, 2004, 327, 209-214.	2.4	14
57	Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. International Journal of Biological Macromolecules, 2004, 34, 195-201.	7.5	10
58	Sulfolobus carboxypeptidase. , 2004, , 953-955.		3
59	Thermal Stability and DNA Binding Activity of a Variant Form of the Sso7d Protein from the Archeon Sulfolobus solfataricus Truncated at Leucine 54. Biochemistry, 2003, 42, 8362-8368.	2.5	22
60	Temperature-Dependent, Irreversible Formation of Amyloid Fibrils by a Soluble Human Ataxin-3 Carrying a Moderately Expanded Polyglutamine Stretch (Q36)â€. Biochemistry, 2003, 42, 14626-14632.	2.5	39
61	3D Structure of Sulfolobus solfataricus Carboxypeptidase Developed by Molecular Modeling is Confirmed by Site-Directed Mutagenesis and Small Angle X-Ray Scattering. Biophysical Journal, 2003, 85, 1165-1175.	0.5	19
62	Structural Instability and Fibrillar Aggregation of Non-expanded Human Ataxin-3 Revealed under High Pressure and Temperature. Journal of Biological Chemistry, 2003, 278, 31554-31563.	3.4	62
63	Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. BBA - Proteins and Proteomics, 2002, 1595, 392-396.	2.1	30
64	Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Molecular Microbiology, 2002, 36, 1470-1480.	2.5	79
65	The Sso7d DNA-binding protein fromSulfolobus solfataricushas ribonuclease activity. FEBS Letters, 2001, 497, 131-136.	2.8	22
66	Various Cells Retrovirally Transduced withN-Acetylgalactosoamine-6-Sulfate Sulfatase Correct Morquio Skin FibroblastsIn Vitro. Human Gene Therapy, 2001, 12, 2007-2016.	2.7	29
67	Structural prerequisites for the stability of Sso7d from the archaeonSulfolobus solfataricus versushigh pressure and temperature. High Pressure Research, 2000, 19, 311-316.	1.2	Ο
68	Photometric Assay for Polynucleotide Phosphorylase. Analytical Biochemistry, 1999, 269, 353-358.	2.4	23
69	A Single-Point Mutation in the Extreme Heat- and Pressure-Resistant Sso7d Protein fromSulfolobussolfataricusLeads to a Major Rearrangement of the Hydrophobic Coreâ€,‡. Biochemistry, 1999, 38, 12709-12717.	2.5	37
70	Differential Scanning Calorimetry Study of the Thermodynamic Stability of Some Mutants of Sso7d from Sulfolobus solfataricus. Biochemistry, 1998, 37, 10493-10498.	2.5	29
71	The Role of Phenylalanine 31 in Maintaining the Conformational Stability of Ribonuclease P2 fromSulfolobus solfataricusunder Extreme Conditions of Temperature and Pressureâ€. Biochemistry, 1997, 36, 8733-8742.	2.5	73
72	Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway 1. FEBS Letters, 1997, 402, 251-255.	2.8	15

#	Article	IF	CITATIONS
73	Extreme heat- and pressure-resistant 7-kDa protein P2 from the archaeonSulfolobus solfataricus is dramatically destabilized by a single-point amino acid substitution. Proteins: Structure, Function and Bioinformatics, 1997, 29, 381-390.	2.6	39
74	Fourteen novel mucopolysaccharidosis IVA producing mutations in GALNS gene. Human Mutation, 1997, 10, 368-375.	2.5	37
75	Fourteen novel mucopolysaccharidosis IVA producing mutations in GALNS gene. Human Mutation, 1997, 10, 368-375.	2.5	4
76	Enhanced stability of carboxypeptidase from Sulfolobus solfataricus at high pressure. Biotechnology Letters, 1996, 18, 483-488.	2.2	18
77	Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium sulfolobus solfataricus in mesophylic hosts. Gene, 1995, 154, 99-103.	2.2	21
78	An 8.5-kDa ribonuclease from the extreme thermophilic archaebacteriumSulfolobus solfataricus. FEBS Letters, 1995, 360, 187-190.	2.8	9
79	1H-NMR and photo-CIDNP spectroscopies show a possible role for Trp23and Phe31in nucleic acid binding by P2 ribonuclease from the archaeonSulfolobus solfataricus. FEBS Letters, 1995, 372, 135-139.	2.8	7
80	Molecular cloning, nucleotide sequence and expression of aSulfolobus solfataricusgene encoding a class II fumarase. FEBS Letters, 1994, 337, 93-98.	2.8	19
81	Metabolic effects of benzoate and sorbate in the yeast Saccharomyces cerevisiae at neutral pH. Archives of Microbiology, 1993, 159, 220-224.	2.2	16
82	Ribonucleases from the extreme thermophilic archaebacterium S. solfataricus. FEBS Journal, 1993, 211, 305-310.	0.2	37
83	Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. FEBS Journal, 1992, 206, 349-357.	0.2	43
84	Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature, 1991, 351, 145-147.	27.8	744
85	Studies on the degradative mechanism of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1014, 153-161.	4.1	13
86	Occurrence of two phosphorylated forms of yeast fructose-1,6-bisphosphatase with different isoelectric points. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 972, 353-356.	4.1	2
87	Occurrence of two phosphorylated forms of yeast fructose-1,6-bisphosphatase with different isoelectric points. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 972, 353-356.	1.0	2
88	Identification of a phosphorylated form of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 930, 220-229.	4.1	3
89	Glucose-induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation. FEBS Letters, 1987, 216, 265-269.	2.8	17
90	Purification of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae and its use for bicarbonate assay. Analytical Biochemistry, 1985, 144, 179-185.	2.4	40

#	Article	IF	CITATIONS
91	Glucose-stimulated cAMP increase may be mediated by intracellular acidification inSaccharomyces cerevisiae. FEBS Letters, 1985, 186, 75-79.	2.8	52
92	Studies on glucose-induced inactivation of gluconeogenetic enzymes in adenylate cyclase and cAMP-dependent protein kinase yeast mutants. FEBS Journal, 1984, 145, 543-548.	0.2	24
93	Dependence on cyclic AMP of glucose-induced inactivation of yeast gluconeogenetic enzymes. FEBS Letters, 1983, 155, 39-42.	2.8	26
94	Effect of Caffeine on Glucose-Induced Inactivation of Gluconeogenetic Enzymes in Saccharomyces cerevisiae. A Possible Role of Cyclic AMP. FEBS Journal, 1982, 126, 617-622.	0.2	46
95	Glucose-dependent metabolic interconversion of fructose-1,6-bisphosphatase in yeast. Biochemical and Biophysical Research Communications, 1981, 100, 688-695.	2.1	68