Ann-Bin Shyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11228903/publications.pdf Version: 2024-02-01

ΔΝΝ-ΒΙΝ SHVII

#	Article	IF	CITATIONS
1	AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences, 1995, 20, 465-470.	7.5	1,834
2	Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nature Structural and Molecular Biology, 2005, 12, 1054-1063.	8.2	394
3	Messenger RNA regulation: to translate or to degrade. EMBO Journal, 2008, 27, 471-481.	7.8	384
4	CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 2014, 510, 412-416.	27.8	365
5	Mammalian miRNA RISC Recruits CAF1 and PABP to Affect PABP-Dependent Deadenylation. Molecular Cell, 2009, 35, 868-880.	9.7	331
6	A Mechanism for Translationally Coupled mRNA Turnover. Cell, 2000, 103, 29-40.	28.9	273
7	Mechanisms of deadenylationâ€dependent decay. Wiley Interdisciplinary Reviews RNA, 2011, 2, 167-183.	6.4	246
8	The Double Lives of Shuttling mRNA Binding Proteins. Cell, 2000, 102, 135-138.	28.9	232
9	Chapter 17 Messenger RNA Half‣ife Measurements in Mammalian Cells. Methods in Enzymology, 2008, 448, 335-357.	1.0	189
10	Ago–TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nature Structural and Molecular Biology, 2009, 16, 1160-1166.	8.2	189
11	Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. Journal of Cell Biology, 2008, 182, 89-101.	5.2	183
12	Versatile Role for hnRNP D Isoforms in the Differential Regulation of Cytoplasmic mRNA Turnover. Molecular and Cellular Biology, 2001, 21, 6960-6971.	2.3	160
13	Highly Selective Actions of HuR in Antagonizing AU-Rich Element-Mediated mRNA Destabilization. Molecular and Cellular Biology, 2002, 22, 7268-7278.	2.3	158
14	Human TOB, an Antiproliferative Transcription Factor, Is a Poly(A)-Binding Protein-Dependent Positive Regulator of Cytoplasmic mRNA Deadenylation. Molecular and Cellular Biology, 2007, 27, 7791-7801.	2.3	149
15	3′ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nature Genetics, 2018, 50, 783-789.	21.4	148
16	UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes and Development, 2004, 18, 2010-2023.	5.9	133
17	Rapid Deadenylation Triggered by a Nonsense Codon Precedes Decay of the RNA Body in a Mammalian Cytoplasmic Nonsense-Mediated Decay Pathway. Molecular and Cellular Biology, 2003, 23, 4805-4813.	2.3	114
18	Regulation of Eotaxin Gene Expression by TNF-α and IL-4 Through mRNA Stabilization: Involvement of the RNA-Binding Protein HuR. Journal of Immunology, 2003, 171, 4369-4378.	0.8	114

ANN-BIN SHYU

#	Article	IF	CITATIONS
19	Comprehensive Characterization of Alternative Polyadenylation in Human Cancer. Journal of the National Cancer Institute, 2018, 110, 379-389.	6.3	111
20	Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. BioEssays, 2001, 23, 775-787.	2.5	103
21	RNA surveillance by nuclear scanning?. Nature Cell Biology, 2002, 4, E144-E147.	10.3	97
22	BTG/TOB factors impact deadenylases. Trends in Biochemical Sciences, 2009, 34, 640-647.	7.5	85
23	MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Research, 2016, 44, 3772-3787.	14.5	81
24	Poly(A) Nuclease Interacts with the C-terminal Domain of Polyadenylate-binding Protein Domain from Poly(A)-binding Protein. Journal of Biological Chemistry, 2007, 282, 25067-25075.	3.4	77
25	Transcriptional Pulsing Approaches for Analysis of mRNA Turnover in Mammalian Cells. Methods, 1999, 17, 11-20.	3.8	72
26	Comparative Peptide Binding Studies of the PABC Domains from the Ubiquitin-protein Isopeptide Ligase HYD and Poly(A)-binding Protein. Journal of Biological Chemistry, 2006, 281, 14376-14382.	3.4	48
27	Evidence Providing New Insights into TOB-Promoted Deadenylation and Supporting a Link between TOB's Deadenylation-Enhancing and Antiproliferative Activities. Molecular and Cellular Biology, 2012, 32, 1089-1098.	2.3	46
28	Coordinated Changes in mRNA Turnover, Translation, and RNA Processing Bodies in Bronchial Epithelial Cells following Inflammatory Stimulation. Molecular and Cellular Biology, 2008, 28, 7414-7426.	2.3	43
29	Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. Rna, 2011, 17, 1619-1634.	3.5	38
30	Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. Rna, 2013, 19, 295-305.	3.5	37
31	Emerging Themes in Regulation of Global mRNA Turnover in cis. Trends in Biochemical Sciences, 2017, 42, 16-27.	7.5	36
32	RNA Foci, CUGBP1, and ZNF9 Are the Primary Targets of the Mutant CUG and CCUG Repeats Expanded in Myotonic Dystrophies Type 1 and Type 2. American Journal of Pathology, 2011, 179, 2475-2489.	3.8	33
33	CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function. Rna, 2016, 22, 830-838.	3.5	33
34	Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. Rna, 2004, 10, 669-680.	3.5	28
35	Deadenylation and P-Bodies. Advances in Experimental Medicine and Biology, 2013, 768, 183-195.	1.6	25
36	Analysis of interferon-beta mRNA stability control after poly(I:C) stimulation using RNA metabolic labeling by ethynyluridine. Biochemical and Biophysical Research Communications, 2012, 428, 44-49.	2.1	22

ANN-BIN SHYU

#	Article	IF	CITATIONS
37	Emerging mechanisms of <scp>mRNP</scp> remodeling regulation. Wiley Interdisciplinary Reviews RNA, 2014, 5, 713-722.	6.4	19
38	Versatile applications of transcriptional pulsing to study mRNA turnover in mammalian cells. Rna, 2007, 13, 1775-1786.	3.5	18
39	Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. Rna, 2020, 26, 1143-1159.	3.5	15
40	ROCK inhibition enhances microRNA function by promoting deadenylation of targeted mRNAs via increasing PAIP2 expression. Nucleic Acids Research, 2015, 43, 7577-7589.	14.5	13
41	Antagonistic actions of two human Pan3 isoforms on global mRNA turnover. Rna, 2017, 23, 1404-1418.	3.5	9
42	Analysis of mRNA decay. , 1996, , 449-456.		8
43	Protein segregase meddles in remodeling of mRNA-protein complexes. Genes and Development, 2013, 27, 980-984.	5.9	2
44	Regulation of mRNA Turnover. , 2010, , 2311-2315.		1
45	UNRaveling the regulation of dosage compensation. Nature Structural and Molecular Biology, 2006, 13, 189-190.	8.2	0