Bathini Nagendra Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11228529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2017, 127, 100-114.	5.5	63
2	An efficient synthesis of 5-substituted 1H-tetrazoles via B(C6F5)3 catalyzed [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Letters, 2014, 55, 3507-3510.	1.4	48
3	Synthesis and biological evaluation of novel Δ ² -isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MedChemComm, 2015, 6, 839-845.	3.4	47
4	Synthesis and α-glucosidase inhibition activity of dihydroxy pyrrolidines. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2818-2823.	2.2	47
5	MoO ₂ Cl ₂ catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New Journal of Chemistry, 2016, 40, 838-843.	2.8	44
6	Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 216-231.	5.5	39
7	Investigation of triazole-linked indole and oxindole glycoconjugates as potential anticancer agents: novel Akt/PKB signaling pathway inhibitors. MedChemComm, 2016, 7, 646-653.	3.4	36
8	Expanding the Conformational Pool of cis-β-Sugar Amino Acid:  Accommodation of β-hGly Motif in Robust 14-Helix. Journal of the American Chemical Society, 2005, 127, 9664-9665.	13.7	35
9	Regioselective Ring Expansion of Isatins with <i>In Situ</i> Generated α-Aryldiazomethanes: Direct Access to Viridicatin Alkaloids. Organic Letters, 2018, 20, 3639-3642.	4.6	35
10	Oligomers of cis-β-norbornene amino acid: Formation of β-strand mimetics. Chemical Communications, 2006, , 1548.	4.1	34
11	Tris(pentafluorophenyl)borane catalyzed acylation of alcohols, phenols, amines, and thiophenols under solvent-free condition. Tetrahedron Letters, 2014, 55, 1784-1787.	1.4	34
12	Indium(III) Chloride Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles from Oximes and Sodium Azide. Synlett, 2016, 27, 1241-1244.	1.8	32
13	β-Strand mimetics: formation of bend-strands in oligomers of enantiomeric β-amino acids. Tetrahedron Letters, 2008, 49, 7368-7371.	1.4	28
14	Discovery of curcumin inspired sulfonamide derivatives as a new class of carbonic anhydrase isoforms I, II, IX, and XII inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1274-1281.	5.2	28
15	Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 892-898.	2.2	28
16	Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3024-3028.	2.2	26
17	An efficient one-pot oxidative esterification of aldehydes to carboxylic esters using B(C6F5)3–TBHP. Tetrahedron Letters, 2015, 56, 889-892.	1.4	24
18	B(C6F5)3 as versatile catalyst: an efficient and mild protocol for the one-pot synthesis of functionalized piperidines and 2-substituted benzimidazole derivatives. Tetrahedron Letters, 2015, 56, 6795-6799.	1.4	22

#	Article	IF	CITATIONS
19	Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2- <i>c</i>]pyrazole tethered carbohydrazide hybrids: exploring their <i>in silico</i> ADMET, ergosterol inhibition and ROS inducing potential. MedChemComm, 2019, 10, 806-813.	3.4	19
20	Synthesis of C 5 -tethered indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2017, 128, 1-12.	5.5	18
21	New imidazo[2,1- <i>b</i>]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Medicinal Chemistry, 2020, 11, 1178-1184.	3.9	18
22	Synthesis of new triazole fused imidazo[2,1-b]thiazole hybrids with emphasis on Staphylococcus aureus virulence factors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126621.	2.2	17
23	Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Advances, 2017, 7, 23680-23686.	3.6	14
24	Regioselective ring expansion followed by H-shift of 3-ylidene oxindoles: a convenient synthesis of N-substituted/un-substituted pyrrolo[2,3- <i>c</i>] quinolines and marinoquinolines. RSC Advances, 2019, 9, 35068-35072.	3.6	14
25	Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorganic Chemistry, 2020, 101, 103983.	4.1	14
26	Synthesis and biological evaluation of novel imidazo[1,2-a]pyridine-oxadiazole hybrids as anti-proliferative agents: Study of microtubule polymerization inhibition and DNA binding. Bioorganic and Medicinal Chemistry, 2021, 43, 116277.	3.0	14
27	Ligand-free Pd-catalysed decarboxylative arylation of imidazo[1,2-a]pyridine-3-carboxylic acids with aryl bromides. RSC Advances, 2016, 6, 65095-65104.	3.6	13
28	Aldehyde-Promoted One-Pot Regiospecific Synthesis of Acrylamides Using an in Situ Generated Molybdenum Tetracarbonyl Amine [Mo(CO) ₄ (amine) ₂] Complex. Organic Letters, 2015, 17, 4592-4595.	4.6	12
29	Solvent-Controlled, Tunable Domino Reaction of 3-Ylideneoxindoles with in Situ-Generated α-Aryldiazomethanes: A Facile Access to 3-Spirocyclopropyl-2-oxindole and Pyrazoloquinazolinone Scaffolds. ACS Omega, 2018, 3, 12349-12360.	3.5	12
30	Synthesis and biological evaluation of new bisindole-imidazopyridine hybrids as apoptosis inducers. Bioorganic Chemistry, 2019, 87, 484-494.	4.1	12
31	Regioselective Ring Expansion of 3-Ylideneoxindoles with Tosyldiazomethane (TsDAM): A Metal-Free and Greener Approach for the Synthesis of Pyrazolo-[1,5- <i>c</i>]quinazolines. Journal of Organic Chemistry, 2020, 85, 5370-5378.	3.2	12
32	Synthesis, DNA binding affinity and anticancer activity of novel 4H-benzo[g][1,2,3]triazolo[5,1-c][1,4]oxazocines. Organic and Biomolecular Chemistry, 2016, 14, 9294-9305.	2.8	10
33	An efficient and mild oxidative amidation of aldehydes using B(C ₆ F ₅) ₃ as a catalyst and biological evaluation of the products as potential antimicrobial agents. New Journal of Chemistry, 2017, 41, 2328-2332.	2.8	10
34	Copper-Catalysed Tandem Synthesis of Substituted Quinazolines from Phenacyl Azides and <i>O</i> -Carbonyl Anilines. ChemistrySelect, 2017, 2, 5378-5383.	1.5	10
35	Targeting tubulin polymerization and DNA binding of 4-thiazolidinone–umbelliferone hybrids: synthesis and cytotoxicity evaluation. New Journal of Chemistry, 2021, 45, 18908-18923.	2.8	10
36	Synthesis, molecular modeling and biological evaluation of aza-flavanones as α-glucosidase inhibitors. MedChemComm, 2017, 8, 1618-1630.	3.4	9

#	Article	IF	CITATIONS
37	Tandem Synthesis of 3,4â€Disubstituted Pyrroles from Aldehydes, 1,3â€Diketones and TosMIC Under Metalâ€Free Conditions. ChemistrySelect, 2018, 3, 2730-2733.	1.5	9
38	A Comprehensive Review on the Therapeutic Versatility of Imidazo [2,1-b]thiazoles. Current Medicinal Chemistry, 2020, 27, 6864-6887.	2.4	9
39	An efficient catalytic reductive amination: A facile one-pot access to 1,2-dihydropyrrolo[3,4-b]indol-3(4H)-ones by using B(C 6 F 5) 3 /NaBH 4. Journal of Chemical Sciences, 2015, 127, 711-716.	1.5	8
40	Umbelliferone–oxindole hybrids as novel apoptosis inducing agents. New Journal of Chemistry, 2017, 41, 12604-12610.	2.8	8
41	Exploration of mercaptoacetamide-linked pyrimidine-1,3,4-oxadiazole derivatives as DNA intercalative topo II inhibitors: Cytotoxicity and apoptosis induction. Bioorganic and Medicinal Chemistry Letters, 2022, 65, 128697.	2.2	8
42	B(C6F5)3 catalyzed one-pot three-component Biginelli reaction: An efficient and environmentally benign protocol for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. Journal of Chemical Sciences, 2015, 127, 1047-1052.	1.5	7
43	Synthesis and biological evaluation of longanlactone analogues as neurotrophic agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 673-676.	2.2	7
44	Synthesis and biological evaluation of strained unusual amino acid containing tetrapeptides as potential antidepressant agents. Bioorganic Chemistry, 2015, 63, 53-57.	4.1	6
45	Design, Synthesis and Biological Evaluation of Substituted (1â€(4â€chlorobenzyl)â€1 <i>H</i> â€indolâ€3â€yl) 1 <i>H</i> â€(1,2,3â€triazolâ€4â€yl)methanones as Antifungal Agents. ChemistrySelect, 2019, 4, 2258-2266.	1.5	6
46	Design and Synthesis of New Etodolacâ€Pyridazinones as Potent Anticancer Agents Using Pb(OAc) ₄ to Assist Nâ€N Bond Formation. ChemistrySelect, 2018, 3, 5050-5054.	1.5	5
47	A facile and metal-free domino reaction of TsDAM and 2-alkenylarylaldehyde: An easy access to 8-hydroxy-2,8-dihydro indeno [2,1- <i>c</i>]pyrazoles. Organic and Biomolecular Chemistry, 2021, 19, 4118-4125.	2.8	5
48	Synthesis and Biological Evaluation of Thieno[2, 3â€ <i>d</i>]pyrimidineâ€amides as Potential Anticancer Agents. ChemistrySelect, 2018, 3, 3101-3106.	1.5	4
49	Design and synthesis of substituted (1-(benzyl)-1 <i>H</i> -1,2,3-triazol-4-yl)(piperazin-1-yl)methanone conjugates: study on their apoptosis inducing ability and tubulin polymerization inhibition. RSC Medicinal Chemistry, 2020, 11, 1295-1302.	3.9	3
50	Insights into the pharmacophore-based 3D-QSAR modeling, molecular dynamics simulation studies of certain dihydroxy pyrrolidine/piperidine and aza-flavanone derivatives as α-glucosidase inhibitors. Journal of Molecular Structure, 2021, 1223, 129243.	3.6	2
51	New Indolylâ€Arylaminopropenone Conjugates: Synthesis, Cytotoxicity and Apoptotic Inducing Studies. ChemistrySelect, 2020, 5, 2063-2069.	1.5	2