Keith D Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11227785/publications.pdf Version: 2024-02-01

KEITH D CDEEN

#	Article	IF	CITATIONS
1	The Future of Aminoglycosides: The End or Renaissance?. ChemBioChem, 2010, 11, 880-902.	2.6	157
2	Kinase-Catalyzed Biotinylation for Phosphoprotein Detection. Journal of the American Chemical Society, 2007, 129, 10-11.	13.7	103
3	6′′â€Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes. Angewandte Chemie - International Edition, 2012, 51, 5652-5656.	13.8	80
4	Exploring the Substrate Promiscuity of Drugâ€Modifying Enzymes for the Chemoenzymatic Generation of Nâ€Acylated Aminoglycosides. ChemBioChem, 2010, 11, 119-126.	2.6	70
5	Amphiphilic Tobramycin Analogues as Antibacterial and Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2015, 59, 4861-4869.	3.2	62
6	Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Nature Communications, 2015, 6, 7896.	12.8	58
7	Aminoglycoside Multiacetylating Activity of the Enhanced Intracellular Survival Protein from <i>Mycobacterium smegmatis</i> and Its Inhibition. Biochemistry, 2012, 51, 4959-4967.	2.5	55
8	Identification and Characterization of Inhibitors of the Aminoglycoside Resistance Acetyltransferase Eis from <i>Mycobacterium tuberculosis</i> . ChemMedChem, 2012, 7, 73-77.	3.2	55
9	Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. Journal of Antimicrobial Chemotherapy, 2013, 68, 800-805.	3.0	54
10	Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles. Journal of Medicinal Chemistry, 2015, 58, 9124-9132.	6.4	54
11	A complex game of hide and seek: the search for new antifungals. MedChemComm, 2016, 7, 1285-1306.	3.4	50
12	A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chemical Science, 2013, 4, 4137.	7.4	48
13	Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts. Antimicrobial Agents and Chemotherapy, 2015, 59, 4148-4156.	3.2	48
14	Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of <i>Mycobacterium tuberculosis</i> by Novel Pyrrolo[1,5- <i>a</i>]pyrazine-Based Eis Inhibitors. ACS Infectious Diseases, 2017, 3, 302-309.	3.8	45
15	Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 10619-10628.	6.4	42
16	Potent Inhibitors of Acetyltransferase Eis Overcome Kanamycin Resistance in <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2016, 11, 1639-1646.	3.4	41
17	Resistance in tuberculosis: what do we know and where can we go?. Frontiers in Microbiology, 2013, 4, 208.	3.5	40
18	Effects of Altering Aminoglycoside Structures on Bacterial Resistance Enzyme Activities. Antimicrobial Agents and Chemotherapy, 2011, 55, 3207-3213.	3.2	37

Keith D Green

#	Article	IF	CITATIONS
19	Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. Journal of Antibiotics, 2015, 68, 153-157.	2.0	36
20	Synthesis and Evaluation of Hetero- and Homodimers of Ribosome-Targeting Antibiotics: Antimicrobial Activity, in Vitro Inhibition of Translation, and Drug Resistance. Journal of Medicinal Chemistry, 2013, 56, 5613-5625.	6.4	35
21	Rapid Synthesis, RNA Binding, and Antibacterial Screening of a Peptidic-Aminosugar (PA) Library. ACS Chemical Biology, 2015, 10, 1278-1289.	3.4	35
22	Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nature Communications, 2021, 12, 7016.	12.8	35
23	Discovery and Optimization of Two Eis Inhibitor Families as Kanamycin Adjuvants against Drug-Resistant <i>M. tuberculosis</i> . ACS Medicinal Chemistry Letters, 2016, 7, 1219-1221.	2.8	34
24	Exploring Kinase Cosubstrate Promiscuity: Monitoring Kinase Activity through Dansylation. ChemBioChem, 2009, 10, 234-237.	2.6	33
25	Assessment of 6′- and 6′′′-N-acylation of aminoglycosides as a strategy to overcome bacterial resistan Organic and Biomolecular Chemistry, 2011, 9, 4057.	ce. 2.8	32
26	Biochemical and structural analysis of aminoglycoside acetyltransferase Eis from Anabaena variabilis. Molecular BioSystems, 2012, 8, 3305.	2.9	32
27	Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase. MedChemComm, 2011, 2, 406.	3.4	29
28	Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Organic and Biomolecular Chemistry, 2015, 13, 9418-9426.	2.8	29
29	Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight. Biochemistry, 2018, 57, 781-790.	2.5	29
30	The Biosynthesis of Capuramycin-type Antibiotics. Journal of Biological Chemistry, 2015, 290, 13710-13724.	3.4	28
31	Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from <i>Bacillus anthracis</i> . Biochemistry, 2015, 54, 3197-3206.	2.5	27
32	Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules, 2018, 23, 3252.	3.8	26
33	Discovery of Inhibitors of <i>Bacillus anthracis</i> Primase DnaG. Biochemistry, 2013, 52, 6905-6910.	2.5	24
34	A Random Sequential Mechanism of Aminoglycoside Acetylation by Mycobacterium tuberculosis Eis Protein. PLoS ONE, 2014, 9, e92370.	2.5	24
35	Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry, 2016, 24, 6298-6306.	3.0	23
36	Potent 1,2,4-Triazino[5,6b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis. ACS Infectious Diseases, 2018, 4, 1030-1040.	3.8	23

Keith D Green

#	Article	IF	CITATIONS
37	Using MbtHâ€Like Proteins to Alter the Substrate Profile of a Nonribosomal Peptide Adenylation Enzyme. ChemBioChem, 2018, 19, 2186-2194.	2.6	23
38	Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone–Neomycin Conjugates. ACS Infectious Diseases, 2017, 3, 206-215.	3.8	21
39	hChAT: A Tool for the Chemoenzymatic Generation of Potential Acetyl/Butyrylcholinesterase Inhibitors. ChemBioChem, 2009, 10, 2191-2194.	2.6	20
40	Tobramycin Variants with Enhanced Ribosomeâ€Targeting Activity. ChemBioChem, 2015, 16, 1565-1570.	2.6	20
41	Arginine-linked neomycin B dimers: synthesis, rRNA binding, and resistance enzyme activity. MedChemComm, 2016, 7, 164-169.	3.4	20
42	Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria. ACS Infectious Diseases, 2015, 1, 272-283.	3.8	19
43	Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall. ACS Infectious Diseases, 2018, 4, 1121-1129.	3.8	19
44	Dissecting the cosubstrate structure requirements of the Staphylococcus aureus aminoglycoside resistance enzyme ANT(4′). Biochemical and Biophysical Research Communications, 2010, 403, 85-90.	2.1	18
45	Influence of Linker Length and Composition on Enzymatic Activity and Ribosomal Binding of Neomycin Dimers. Antimicrobial Agents and Chemotherapy, 2015, 59, 3899-3905.	3.2	18
46	Cosubstrate Tolerance of the Aminoglycoside Resistance Enzyme Eis from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5831-5838.	3.2	16
47	Redesign of Substrate Specificity and Identification of the Aminoglycoside Binding Residues of Eis from Mycobacterium tuberculosis. Biochemistry, 2013, 52, 5125-5132.	2.5	16
48	A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW. Organic and Biomolecular Chemistry, 2016, 14, 3956-3962.	2.8	16
49	Investigation of the role of linker moieties in bifunctional tacrine hybrids. Bioorganic and Medicinal Chemistry, 2013, 21, 3614-3623.	3.0	14
50	Domain dissection and characterization of the aminoglycoside resistance enzyme ANT(3″)-li/AAC(6′)-lld from Serratia marcescens. Biochimie, 2013, 95, 1319-1325.	2.6	14
51	Synthesis and Biological Activity of Mono- and Di-N-acylated Aminoglycosides. ACS Medicinal Chemistry Letters, 2015, 6, 1134-1139.	2.8	14
52	Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2020, 15, 1581-1594.	3.4	14
53	N,N′-diaryl-bishydrazones in a biphenyl platform: Broad spectrum antifungal agents. European Journal of Medicinal Chemistry, 2019, 164, 273-281.	5.5	13
54	Synthesis, antimicrobial activity, attenuation of aminoglycoside resistance in MRSA, and ribosomal A-site binding of pyrene-neomycin conjugates. European Journal of Medicinal Chemistry, 2019, 163, 381-393.	5.5	13

KEITH D GREEN

#	Article	lF	CITATIONS
55	Redesign of Cosubstrate Specificity and Identification of Important Residues for Substrate Binding to hChAT. Biochemistry, 2010, 49, 6219-6227.	2.5	12
56	Differential Effects of Linkers on the Activity of Amphiphilic Tobramycin Antifungals. Molecules, 2018, 23, 899.	3.8	11
57	Bis(N-amidinohydrazones) and N-(amidino)-N′-aryl-bishydrazones: New classes of antibacterial/antifungal agents. Bioorganic and Medicinal Chemistry, 2017, 25, 58-66.	3.0	10
58	Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1127-1132.	2.2	9
59	Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from <i>Mycobacterium tuberculosis</i> to overcome kanamycin resistance. RSC Medicinal Chemistry, 2021, 12, 1894-1909.	3.9	9
60	Interfering With DNA Decondensation as a Strategy Against Mycobacteria. Frontiers in Microbiology, 2018, 9, 2034.	3.5	8
61	Kinaseâ€Catalyzed Biotinylation of Peptides, Proteins, and Lysates. Current Protocols in Chemical Biology, 2012, 4, 83-100.	1.7	6
62	Discovery and Optimization of 6-(1-Substituted pyrrole-2-yl)- <i>s</i> -triazine Containing Compounds as Antibacterial Agents. ACS Infectious Diseases, 2022, 8, 757-767.	3.8	6
63	Probing the Robustness of Inhibitors of Tuberculosis Aminoglycoside Resistance Enzyme Eis by Mutagenesis. ACS Infectious Diseases, 2019, 5, 1772-1778.	3.8	5
64	Posttranslational Modification of Proteins. , 2010, , 433-468.		2
65	Development of Singleâ€Stranded DNA Bisintercalating Inhibitors of Primase DnaG as Antibiotics. ChemMedChem, 2021, 16, 1986-1995.	3.2	2
66	Chapter 7. Emerging Targets in Anti-Tubercular Drug Design. RSC Drug Discovery Series, 0, , 141-203.	0.3	2
67	Innentitelbild: 6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes (Angew. Chem. 23/2012). Angewandte Chemie, 2012, 124, 5602-5602.	2.0	0
68	Inside Cover: 6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes (Angew. Chem. Int. Ed. 23/2012). Angewandte Chemie - International Edition, 2012, 51, 5508-5508.	13.8	0
69	Back Cover: Identification and Characterization of Inhibitors of the Aminoglycoside Resistance Acetyltransferase Eis from Mycobacterium tuberculosis (ChemMedChem 1/2012). ChemMedChem, 2012, 7, 176-176.	3.2	0

70 Posttranslational Modification of Proteins. , 2010, , 528-559.