Jennifer A Dunne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11227624/publications.pdf

Version: 2024-02-01

41 papers

7,921 citations

147801 31 h-index 315739 38 g-index

42 all docs

42 docs citations

42 times ranked 9239 citing authors

#	Article	IF	CITATIONS
1	Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology, 2021, 47, 385-401.	2.0	14
2	Ecological networks and archaeology. Antiquity, 2021, 95, 812-825.	1.0	6
3	Ecogeographical rules and the macroecology of food webs. Global Ecology and Biogeography, 2019, 28, 1204-1218.	5.8	34
4	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
5	Effect of spatial scale on the network properties of estuarine food webs. Ecological Complexity, 2017, 29, 87-92.	2.9	3
6	The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Scientific Reports, 2016, 6, 21179.	3.3	55
7	mangal – making ecological network analysis simple. Ecography, 2016, 39, 384-390.	4.5	53
8	Back to the fundamentals: a reply to Barot et al Trends in Ecology and Evolution, 2015, 30, 370-371.	8.7	2
9	Effects of spatial scale of sampling on food web structure. Ecology and Evolution, 2015, 5, 3769-3782.	1.9	47
10	On the Importance of First Principles in Ecological Theory Development. BioScience, 2015, 65, 342-343.	4.9	11
11	Fundamental ecology is fundamental. Trends in Ecology and Evolution, 2015, 30, 9-16.	8.7	61
12	On Theory in Ecology. BioScience, 2014, 64, 701-710.	4.9	195
13	Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133280.	2.6	68
14	Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity. PLoS Biology, 2013, 11, e1001579.	5.6	233
15	Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2903-2912.	4.0	153
16	Physiological regulatory networks: ecological roles and evolutionary constraints. Trends in Ecology and Evolution, 2012, 27, 428-435.	8.7	177
17	Phenological tracking enables positive species responses to climate change. Ecology, 2012, 93, 1765-1771.	3.2	260
18	Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 2012, 27, 689-697.	8.7	521

#	Article	IF	CITATIONS
19	Food Webs., 2012,, 1155-1176.		2
20	Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology, 2012, 57, 1329-1341.	2.4	73
21	The Role of Body Size in Complex Food Webs. Advances in Ecological Research, 2011, 45, 181-223.	2.7	79
22	Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean. Ecosystems, 2011, 14, 198-222.	3.4	212
23	Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales. Theoretical Ecology, 2010, 3, 123-135.	1.0	18
24	Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 2010, 13, 1546-1559.	6.4	159
25	Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 187-191.	7.1	286
26	Major dimensions in foodâ€web structure properties. Ecology, 2009, 90, 278-282.	3.2	89
27	An Introduction to the Biocomplexity of Sanak Island, Western Gulf of Alaska. Pacific Science, 2009, 63, 673-709.	0.6	33
28	Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1711-1723.	4.0	233
29	Chapter 3 Modelling the dynamics of complex food webs. , 2009, , 37-44.		8
30	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	6.4	716
31	Compilation and Network Analyses of Cambrian Food Webs. PLoS Biology, 2008, 6, e102.	5 . 6	211
32	RESPONSE OF COMPLEX FOOD WEBS TO REALISTIC EXTINCTION SEQUENCES. Ecology, 2007, 88, 671-682.	3.2	164
33	Complexity in Ecology and Conservation: Mathematical, Statistical, and Computational Challenges. BioScience, 2005, 55, 501.	4.9	115
34	INTEGRATING EXPERIMENTAL AND GRADIENT METHODS IN ECOLOGICAL CLIMATE CHANGE RESEARCH. Ecology, 2004, 85, 904-916.	3.2	229
35	SUBALPINE MEADOW FLOWERING PHENOLOGY RESPONSES TO CLIMATE CHANGE: INTEGRATING EXPERIMENTAL AND GRADIENT METHODS. Ecological Monographs, 2003, 73, 69-86.	5.4	365
36	SUBALPINE MEADOW FLOWERING PHENOLOGY RESPONSES TO CLIMATE CHANGE: INTEGRATING EXPERIMENTAL AND GRADIENT METHODS. , 2003, 73, 69.		1

#	Article	IF	CITATIONS
37	Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12917-12922.	7.1	1,117
38	Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12913-12916.	7.1	324
39	Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles, 2002, 16, 3-1-3-18.	4.9	113
40	Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters, 2002, 5, 558-567.	6.4	1,344
41	Species-mediated soil moisture availability and patchy establishment of Pseudotsuga menziesii in chaparral. Oecologia, 1999, 119, 36-45.	2.0	51