
Wei-Hsuan Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11227278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of Particle Trajectory Under Laminar Flow for MDDS Application. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	0
2	Simulation and Observation of Magnetic Particles Captured in Fluids Using High Temperature Superconductor Bulk. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	1
3	Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nature Reviews Materials, 2017, 2, .	48.7	284
4	Perovskite Solar Cells Employing Dopantâ€Free Organic Hole Transport Materials with Tunable Energy Levels. Advanced Materials, 2016, 28, 440-446.	21.0	249
5	Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81.	31.5	1,890
6	High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 2015, 9, 190-198.	31.4	489
7	A Selenophene Containing Benzodithiophene- <i>alt</i> -thienothiophene Polymer for Additive-Free High Performance Solar Cell. Macromolecules, 2015, 48, 562-568.	4.8	59
8	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	12.2	148
9	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	9.1	91
10	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	3.3	667
11	Elucidating Double Aggregation Mechanisms in the Morphology Optimization of Diketopyrrolopyrroleâ€Based Narrow Bandgap Polymer Solar Cells. Advanced Materials, 2014, 26, 3142-3147.	21.0	52
12	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	12.8	2,214
13	Side hain Tunability via Triple Component Random Copolymerization for Better Photovoltaic Polymers. Advanced Energy Materials, 2014, 4, 1300864.	19.5	81
14	An Efficient Tripleâ€Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Advanced Materials, 2014, 26, 5670-5677.	21.0	752
15	Improving Structural Order for a Highâ€Performance Diketopyrrolopyrroleâ€Based Polymer Solar Cell with a Thick Active Layer. Advanced Energy Materials, 2014, 4, 1300739.	19.5	43
16	A Selenium‣ubstituted Lowâ€Bandgap Polymer with Versatile Photovoltaic Applications. Advanced Materials, 2013, 25, 825-831.	21.0	396
17	High-performance semi-transparent polymer solar cells possessing tandem structures. Energy and Environmental Science, 2013, 6, 2714.	30.8	170
18	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers, Macromolecules, 2013, 46, 4734-4734.	4.8	17

#	Article	IF	CITATIONS
19	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 3384-3390.	4.8	299
20	Synthesis, micellar structures, and multifunctional sensory properties of poly(3â€hexylthiophene)â€ <i>block</i> â€poly(2â€(dimethylamino)ethyl methacrylate) rodâ€coil diblock copolymers. Journal of Polymer Science Part A, 2011, 49, 147-155.	2.3	27
21	Thin film morphologies of ï€-conjugated rod-coil block copolymers with thermoresponsive property: A combined experimental and molecular simulation study. Journal of Chemical Physics, 2010, 132, 214901.	3.0	4