
Yanping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11220761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MDMX Recruits UbcH5c to Facilitate MDM2 E3 Ligase Activity and Subsequent p53 Degradation <i>In Vivo</i> . Cancer Research, 2021, 81, 898-909.	0.9	22
2	Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends in Cancer, 2021, 7, 226-239.	7.4	34
3	Chronic REM-sleep deprivation induced laryngopharyngeal reflux in rats: A preliminary study. Auris Nasus Larynx, 2021, 48, 683-689.	1.2	3
4	Postoperative hemorrhage following coblation tonsillectomy with and without suture: A randomized study in Chinese adults. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 102760.	1.3	8
5	A p53/CPEB2 negative feedback loop regulates renal cancer cell proliferation and migration. Journal of Genetics and Genomics, 2021, 48, 606-617.	3.9	7
6	New insight into the role of MDMX in MDM2-mediated p53 degradation and anti-cancer drug development. Oncoscience, 2021, 8, 94-96.	2.2	0
7	MDMX is essential for the regulation of p53 protein levels in the absence of a functional MDM2 C-terminal tail. BMC Molecular and Cell Biology, 2021, 22, 46.	2.0	3
8	CRL4 ^{DCAF1/VprBP} E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development. Science Advances, 2020, 6, .	10.3	27
9	Molecular Processes and Hub Genes of Acropora Palmata in Response to Thermal Stress And Bleaching. Journal of Coastal Research, 2019, 35, 26.	0.3	1
10	Nutrient availability dictates the regulation of metabolism by the ribosomal protein-MDM2-p53 pathway. Molecular and Cellular Oncology, 2018, 5, e1302904.	0.7	2
11	p32 regulates ER stress and lipid homeostasis by downâ€regulating GCS1 expression. FASEB Journal, 2018, 32, 3892-3902.	0.5	12
12	p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell Reports, 2018, 24, 1484-1495.	6.4	31
13	Protection against High-Fat-Diet-Induced Obesity in MDM2 C305F Mice Due to Reduced p53 Activity and Enhanced Energy Expenditure. Cell Reports, 2017, 18, 1005-1018.	6.4	49
14	Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development. Current Biology, 2017, 27, 483-494.	3.9	59
15	p32 heterozygosity protects against age- and diet-induced obesity by increasing energy expenditure. Scientific Reports, 2017, 7, 5754.	3.3	15
16	Inactivation of the MDM2 RING domain enhances p53 transcriptional activity in mice. Journal of Biological Chemistry, 2017, 292, 21614-21622.	3.4	11
17	Mouse modelling of the MDM2/MDMXâ^'p53 signalling axis. Journal of Molecular Cell Biology, 2017, 9, 34-44.	3.3	17
18	BIRC6 mediates imatinib resistance independently of Mcl-1. PLoS ONE, 2017, 12, e0177871.	2.5	16

#	Article	IF	CITATIONS
19	p53 upregulates PLCε-IP3-Ca2+ pathway and inhibits autophagy through its target gene Rap2B. Oncotarget, 2017, 8, 64657-64669.	1.8	8
20	RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression. Cancer Research, 2016, 76, 5030-5039.	0.9	23
21	p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway. Scientific Reports, 2016, 6, 38067.	3.3	59
22	RP–MDM2–p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends in Cancer, 2016, 2, 191-204.	7.4	77
23	The Evolution of the Ribosomal Protein–MDM2–p53 Pathway. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026138.	6.2	47
24	Rhythmic expression of DEC2 protein in vitro and in vivo. Biomedical Reports, 2016, 4, 704-710.	2.0	11
25	MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Molecular Cell, 2016, 61, 68-83.	9.7	82
26	Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis. PLoS ONE, 2016, 11, e0152263.	2.5	13
27	Rap2B promotes proliferation, migration and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Scientific Reports, 2015, 5, 12363.	3.3	70
28	CHCHD2 connects mitochondrial metabolism to apoptosis. Molecular and Cellular Oncology, 2015, 2, e1004964.	0.7	16
29	DEC1 negatively regulates AMPK activity via LKB1. Biochemical and Biophysical Research Communications, 2015, 467, 711-716.	2.1	24
30	The MDM2 RING Domain and Central Acidic Domain Play Distinct Roles in MDM2 Protein Homodimerization and MDM2-MDMX Protein Heterodimerization. Journal of Biological Chemistry, 2015, 290, 12941-12950.	3.4	37
31	p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1791-1798.	2.5	10
32	Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nature Communications, 2015, 6, 5909.	12.8	54
33	Role of Rap2 and its Downstream Effectors in Tumorigenesis. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 1269-1276.	1.7	5
34	MDM2–p53 Pathway in Hepatocellular Carcinoma. Cancer Research, 2014, 74, 7161-7167.	0.9	177
35	Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2414-22.	7.1	91
36	The anaphase-promoting complex/cyclosome is an E3 ubiquitin ligase for Mdm2. Cell Cycle, 2014, 13, 2101-2109.	2.6	13

#	Article	IF	CITATIONS
37	Nucleolar Signaling Determines Cell Fate: The RP-Mdm2-p53 Axis Fine-Tunes Cellular Homeostasis. Cancer Drug Discovery and Development, 2014, , 231-257.	0.4	1
38	Stem cells in a three-dimensional scaffold environment. SpringerPlus, 2014, 3, 80.	1.2	76
39	Regulation of p53 by Mdm2 E3 Ligase Function Is Dispensable in Embryogenesis and Development, but Essential in Response to DNA Damage. Cancer Cell, 2014, 26, 235-247.	16.8	54
40	Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumor Biology, 2014, 35, 9387-9394.	1.8	15
41	Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget, 2014, 5, 860-871.	1.8	81
42	p53 Regulation Goes LiveMdm2 and MdmX Co-Star: Lessons Learned from Mouse Modeling. Genes and Cancer, 2012, 3, 219-225.	1.9	8
43	Regulation of p53: a collaboration between Mdm2 and MdmX. Oncotarget, 2012, 3, 228-235.	1.8	123
44	Mdm2 RING Mutation Enhances p53 Transcriptional Activity and p53-p300 Interaction. PLoS ONE, 2012, 7, e38212.	2.5	12
45	Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nature Medicine, 2011, 17, 944-951.	30.7	170
46	The In Vivo Role of the RP-Mdm2-p53 Pathway in Signaling Oncogenic Stress Induced by pRb Inactivation and Ras Overexpression. PLoS ONE, 2011, 6, e21625.	2.5	17
47	p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation. Journal of Biological Chemistry, 2011, 286, 28343-28356.	3.4	60
48	The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine. Genes and Cancer, 2011, 2, 392-403.	1.9	51
49	Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8791-8796.	7.1	29
50	The RP-Mdm2-p53 Pathway and Tumorigenesis. Oncotarget, 2011, 2, 234-238.	1.8	79
51	The Role of the Nucleolus in the Stress Response. , 2011, , 281-299.		0
52	Regulation of the p53 Tumor Suppressor Pathway: The Problems and Promises of Studying Mdm2's E3 Ligase Function. Critical Reviews in Eukaryotic Gene Expression, 2010, 20, 77-86.	0.9	3
53	Mitochondrial HEP27 Is a c-Myb Target Gene That Inhibits Mdm2 and Stabilizes p53. Molecular and Cellular Biology, 2010, 30, 3981-3993.	2.3	58
54	The RP-p53-Mdm2 pathway. Cell Cycle, 2010, 9, 4427-4427.	2.6	1

#	Article	IF	CITATIONS
55	Mitochondrial targeting signals: Another barcode in p14ARF?. Cell Cycle, 2010, 9, 861-869.	2.6	2
56	Maxillofacial mass as the first presentation of acute lymphoblastic leukemia in a nine-year-old girl. Auris Nasus Larynx, 2010, 37, 377-380.	1.2	6
57	An ARF-Independent c-MYC-Activated Tumor Suppression Pathway Mediated by Ribosomal Protein-Mdm2 Interaction. Cancer Cell, 2010, 18, 231-243.	16.8	185
58	Depletion of Guanine Nucleotides Leads to the Mdm2-Dependent Proteasomal Degradation of Nucleostemin. Cancer Research, 2009, 69, 3004-3012.	0.9	26
59	E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17493-17498.	7.1	80
60	MTA1 Coregulator Regulates p53 Stability and Function. Journal of Biological Chemistry, 2009, 284, 34545-34552.	3.4	46
61	p53 Oligomerization Is Essential for Its C-terminal Lysine Acetylation. Journal of Biological Chemistry, 2009, 284, 5158-5164.	3.4	58
62	Signaling to p53: Ribosomal Proteins Find Their Way. Cancer Cell, 2009, 16, 369-377.	16.8	510
63	Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption. Leukemia Research, 2008, 32, 131-141.	0.8	49
64	Mitochondrial p32 Is a Critical Mediator of ARF-Induced Apoptosis. Cancer Cell, 2008, 13, 542-553.	16.8	131
65	Ribosomal Protein S9 Is a Novel B23/NPM-binding Protein Required for Normal Cell Proliferation. Journal of Biological Chemistry, 2008, 283, 15568-15576.	3.4	107
66	ARF in the mitochondria: The last frontier?. Cell Cycle, 2008, 7, 3641-3646.	2.6	26
67	Unlocking the Mdm2-p53 loop: Ubiquitin is the key. Cell Cycle, 2008, 7, 287-292.	2.6	63
68	Putting a Finger on Growth Surveillance: Insight into MDM2 Zinc Finger-Ribosomal Protein Interactions. Cell Cycle, 2007, 6, 434-437.	2.6	60
69	Cancer-Associated Mutations in the MDM2 Zinc Finger Domain Disrupt Ribosomal Protein Interaction and Attenuate MDM2-Induced p53 Degradation. Molecular and Cellular Biology, 2007, 27, 1056-1068.	2.3	131
70	Targeted Inactivation of Mdm2 RING Finger E3 Ubiquitin Ligase Activity in the Mouse Reveals Mechanistic Insights into p53 Regulation. Cancer Cell, 2007, 12, 355-366.	16.8	228
71	B23 and ARF: Friends or Foes?. Cell Biochemistry and Biophysics, 2006, 46, 79-90.	1.8	44
72	Nucleocytoplasmic Shuttling Modulates Activity and Ubiquitination-Dependent Turnover of SUMO-Specific Protease 2. Molecular and Cellular Biology, 2006, 26, 4675-4689.	2.3	84

#	Article	IF	CITATIONS
73	Essential Role of the B23/NPM Core Domain in Regulating ARF Binding and B23 Stability. Journal of Biological Chemistry, 2006, 281, 18463-18472.	3.4	58
74	Regulation of the MDM2-p53 Pathway by Ribosomal Protein L11 Involves a Post-ubiquitination Mechanism. Journal of Biological Chemistry, 2006, 281, 24304-24313.	3.4	108
75	Inhibition of HDM2 and Activation of p53 by Ribosomal Protein L23. Molecular and Cellular Biology, 2004, 24, 7669-7680.	2.3	329
76	The ARF-B23 Connection: Implications for Growth Control and Cancer Treatment. Cell Cycle, 2004, 3, 257-260.	2.6	32
77	Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO Journal, 2004, 23, 2402-2412.	7.8	225
78	The ARF-B23 connection: implications for growth control and cancer treatment. Cell Cycle, 2004, 3, 259-62.	2.6	18
79	Tumor Suppressor ARF Degrades B23, a Nucleolar Protein Involved in Ribosome Biogenesis and Cell Proliferation. Molecular Cell, 2003, 12, 1151-1164.	9.7	408
80	Ribosomal Protein L11 Negatively Regulates Oncoprotein MDM2 and Mediates a p53-Dependent Ribosomal-Stress Checkpoint Pathway. Molecular and Cellular Biology, 2003, 23, 8902-8912.	2.3	488
81	Nucleocytoplasmic Shuttling of p53 Is Essential for MDM2-Mediated Cytoplasmic Degradation but Not Ubiquitination. Molecular and Cellular Biology, 2003, 23, 6396-6405.	2.3	117
82	The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1. Molecular and Cellular Biology, 2000, 20, 8185-8197.	2.3	130
83	Mutations in Human ARF Exon 2 Disrupt Its Nucleolar Localization and Impair Its Ability to Block Nuclear Export of MDM2 and p53. Molecular Cell, 1999, 3, 579-591.	9.7	340
84	Chlorella Virus NY-2A Encodes at Least 12 DNA Endonuclease/Methyltransferase Genes. Virology, 1998, 240, 366-375.	2.4	43
85	ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways. Cell, 1998, 92, 725-734.	28.9	1,508
86	Chlorella virus SC-1A encodes at least five functional and one nonfunctional DNA methyltransferases. Gene, 1997, 190, 237-244.	2.2	14
87	Analysis of 45 kb of DNA located at the left end of the chlorella virus PBCV-1 genorne. Virology, 1995, 206, 339-352.	2.4	67
88	DNA methyltransferases and DNA site-specific endonucleases encoded by chlorella viruses. , 1993, 64, 186-211.		13
89	Characterization ofChlorellavirus PBCV-1CviAll restriction and modification system. Nucleic Acids Research, 1992, 20, 5351-5356.	14.5	40
90	A single amino acid change restores DNA Cytosine methyltransferase activity in a cloned chlorella virus pseudogene. Nucleic Acids Research, 1992, 20, 1637-1642.	14.5	20

#	Article	IF	CITATIONS
91	The termini of the Chlorella virus PBCV-1 genome are identical 2.2-kbp inverted repeats. Virology, 1991, 180, 763-769.	2.4	33