
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11218617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonmyeloablative Allogeneic Transplantation With Post-Transplant Cyclophosphamide for Acute Myeloid Leukemia With IDH Mutations: A Single Center Experience. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 260-269.	0.4	4
2	Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by immune profiling and machine learning. Blood, 2022, 139, 608-623.	1.4	42
3	Randomized Phase III BMT CTN Trial of Calcineurin Inhibitor–Free Chronic Graft-Versus-Host Disease Interventions in Myeloablative Hematopoietic Cell Transplantation for Hematologic Malignancies. Journal of Clinical Oncology, 2022, 40, 356-368.	1.6	79
4	BET-bromodomain and EZH2 inhibitor–treated chronic GVHD mice have blunted germinal centers with distinct transcriptomes. Blood, 2022, 139, 2983-2997.	1.4	6
5	PTCy and "The Story of the Three Bearsâ€, Bone Marrow Transplantation, 2021, 56, 765-766.	2.4	2
6	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplantation and Cellular Therapy, 2021, 27, 452-466.	1.2	24
7	National Marrow Donor Program–Sponsored Multicenter, Phase II Trial of HLA-Mismatched Unrelated Donor Bone Marrow Transplantation Using Post-Transplant Cyclophosphamide. Journal of Clinical Oncology, 2021, 39, 1971-1982.	1.6	90
8	Safety and Efficacy of Pembrolizumab Prior to Allogeneic Stem Cell Transplantation for Acute Myelogenous Leukemia. Transplantation and Cellular Therapy, 2021, 27, 1021.e1-1021.e5.	1.2	15
9	Nonmyeloablative, HLA-Mismatched Unrelated Peripheral Blood Transplantation with High-Dose Post-Transplantation Cyclophosphamide. Transplantation and Cellular Therapy, 2021, 27, 909.e1-909.e6.	1.2	7
10	Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Blood Cancer Discovery, 2021, 2, 616-629.	5.0	41
11	Allogeneic Blood or Marrow Transplantation with Nonmyeloablative Conditioning and High-Dose Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis for Secondary Central Nervous System Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 863.e1-863.e5.	1.2	4
12	Transcriptomic Features of Immune Exhaustion and Senescence Predict Outcomes and Define Checkpoint Blockade-Unresponsive Microenvironments in Acute Myeloid Leukemia. Blood, 2021, 138, 223-223.	1.4	1
13	Treatment of AML Relapse After Allo-HCT. Frontiers in Oncology, 2021, 11, 812207.	2.8	16
14	Post-transplant cyclophosphamide use in matched HLA donors: a review of literature and future application. Bone Marrow Transplantation, 2020, 55, 40-47.	2.4	31
15	The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplantation, 2020, 55, 12-24.	2.4	94
16	Immunomodulation with pomalidomide at early lymphocyte recovery after induction chemotherapy in newly diagnosed AML and high-risk MDS. Leukemia, 2020, 34, 1563-1576.	7.2	17
17	Allogeneic Haploidentical Blood or Marrow Transplantation with Post-Transplantation Cyclophosphamide in Chronic Lymphocytic Leukemia. Biology of Blood and Marrow Transplantation, 2020, 26, 502-508.	2.0	9
18	Shortened-Duration Immunosuppressive Therapy after Nonmyeloablative, Related HLA-Haploidentical or Unrelated Peripheral Blood Grafts and Post-Transplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2020, 26, 2075-2081.	2.0	17

#	Article	IF	CITATIONS
19	Allogeneic bone marrow transplantation with post-transplant cyclophosphamide for patients with HIV and haematological malignancies: a feasibility study. Lancet HIV,the, 2020, 7, e602-e610.	4.7	11
20	Allogeneic transplantation for Ph+ acute lymphoblastic leukemia with posttransplantation cyclophosphamide. Blood Advances, 2020, 4, 5078-5088.	5.2	23
21	Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Advances, 2020, 4, 3913-3925.	5.2	52
22	Thrombotic Microangiopathy after Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. Biology of Blood and Marrow Transplantation, 2020, 26, 2306-2310.	2.0	8
23	Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Advances, 2020, 4, 1770-1779.	5.2	92
24	Non-Myeloablative Allogeneic Transplantation with Post-Transplant Cyclophosphamide after Immune Checkpoint Inhibition for Classic Hodgkin Lymphoma: A Retrospective Cohort Study. Biology of Blood and Marrow Transplantation, 2020, 26, 1679-1688.	2.0	25
25	Post-transplantation Cyclophosphamide: From HLA-Haploidentical to Matched-Related and Matched-Unrelated Donor Blood and Marrow Transplantation. Frontiers in Immunology, 2020, 11, 636.	4.8	27
26	Inhibition of inositol kinase B controls acute and chronic graft-versus-host disease. Blood, 2020, 135, 28-40.	1.4	14
27	Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: consensus recommendations from the Acute Leukemia Working Party of the EBMT. Haematologica, 2020, 105, 47-58.	3.5	51
28	Severe Cytokine Release Syndrome after Haploidentical Peripheral Blood Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 2431-2437.	2.0	54
29	Post-transplantation cyclophosphamide for chimerism-based tolerance. Bone Marrow Transplantation, 2019, 54, 769-774.	2.4	15
30	Immune reconstitution after T-cell replete HLA-haploidentical transplantation. Seminars in Hematology, 2019, 56, 221-226.	3.4	29
31	T Cell Repertoire Evolution after Allogeneic Bone Marrow Transplantation: An Organizational Perspective. Biology of Blood and Marrow Transplantation, 2019, 25, 868-882.	2.0	15
32	Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: a prospective clinical trial. Lancet Haematology,the, 2019, 6, e183-e193.	4.6	111
33	Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nature Medicine, 2019, 25, 603-611.	30.7	253
34	Targeting PI3Kl̂´ function for amelioration of murine chronic graft-versus-host disease. American Journal of Transplantation, 2019, 19, 1820-1830.	4.7	9
35	How we perform haploidentical stem cell transplantation with posttransplant cyclophosphamide. Blood, 2019, 134, 1802-1810.	1.4	42
36	PTCY keeps on giving!. Blood, 2019, 134, 848-849.	1.4	3

#	Article	IF	CITATIONS
37	HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis. Blood Advances, 2019, 3, 2581-2585.	5.2	27
38	Haploidentical transplantation using posttransplant cyclophosphamide as GVHD prophylaxis in patients over age 70. Blood Advances, 2019, 3, 2608-2616.	5.2	20
39	Activated Allogeneic Donor-derived Marrow-infiltrating Lymphocytes Display Measurable In Vitro Antitumor Activity. Journal of Immunotherapy, 2019, 42, 73-80.	2.4	2
40	Development of Grade II Acute Graft-versus-Host Disease Is Associated with Improved Survival after Myeloablative HLA-Matched Bone Marrow Transplantation using Single-Agent Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2019, 25, 1128-1135.	2.0	38
41	Small-molecule BCL6 inhibitor effectively treats mice with nonsclerodermatous chronic graft-versus-host disease. Blood, 2019, 133, 94-99.	1.4	21
42	Mechanism of action of posttransplantation cyclophosphamide: more than meets the eye. Journal of Clinical Investigation, 2019, 129, 2189-2191.	8.2	11
43	How we perform haploidentical stem cell transplantation with posttransplant cyclophosphamide. Hematology American Society of Hematology Education Program, 2019, 2019, 513-521.	2.5	19
44	Systemic depletion of lymphocytes following focal radiation to the brain in a murine model. Oncolmmunology, 2018, 7, e1445951.	4.6	15
45	Teaching a Young Dog New Tricks: Modifications to the Post-Transplantation Cyclophosphamide Haploidentical Transplantation Platform. Biology of Blood and Marrow Transplantation, 2018, 24, 1108-1110.	2.0	7
46	Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 1022-1028.	2.0	29
47	Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide Using Non–First-Degree Related Donors. Biology of Blood and Marrow Transplantation, 2018, 24, 1099-1102.	2.0	61
48	Have haploidentical transplants replaced umbilical cord transplants for acute leukemias?. Current Opinion in Hematology, 2018, 25, 103-111.	2.5	18
49	Blood and Marrow Transplant Clinical Trials Network Report on the Development of Novel Endpoints and Selection of Promising Approaches for Graft-versus-Host Disease Prevention Trials. Biology of Blood and Marrow Transplantation, 2018, 24, 1274-1280.	2.0	46
50	The European Society for Blood and Marrow Transplantation (EBMT) Consensus Guidelines for the Detection and Treatment of Donor-specific Anti-HLA Antibodies (DSA) in Haploidentical Hematopoietic Cell Transplantation. Bone Marrow Transplantation, 2018, 53, 521-534.	2.4	168
51	Haploidentical Transplants: Immune Reconstitution With and Without Augmentation Strategies. , 2018, , 271-289.		0
52	A Multi-center Phase I Trial of Ipilimumab in Patients with Myelodysplastic Syndromes following Hypomethylating Agent Failure. Clinical Cancer Research, 2018, 24, 3519-3527.	7.0	80
53	Grade II Acute Graft-versus-Host Disease and Higher Nucleated Cell Graft Dose Improve Progression-Free Survival after HLA-Haploidentical Transplant with Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2018, 24, 343-352.	2.0	61
54	Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 666-677.	2.0	45

#	Article	IF	CITATIONS
55	Early Fever after Haploidentical Bone Marrow Transplantation Correlates with Class II HLA-Mismatching and Myeloablation but Not Outcomes. Biology of Blood and Marrow Transplantation, 2018, 24, 2056-2064.	2.0	32
56	Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight, 2018, 3, .	5.0	123
57	NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood, 2018, 131, 247-262.	1.4	164
58	Post-Transplantation Cyclophosphamide after Bone Marrow Transplantation Is Not Associated with an Increased Risk of Donor-Derived Malignancy. Biology of Blood and Marrow Transplantation, 2017, 23, 612-617.	2.0	17
59	Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica, 2017, 102, 391-400.	3.5	152
60	Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-Î ² production. Blood, 2017, 129, 2570-2580.	1.4	122
61	Plasma-derived proteomic biomarkers in human leukocyte antigen-haploidentical or human leukocyte antigen-matched bone marrow transplantation using post-transplantation cyclophosphamide. Haematologica, 2017, 102, 932-940.	3.5	27
62	Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood, 2017, 129, 1389-1393.	1.4	69
63	Allogeneic Blood or Marrow Transplantation with Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis in Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2017, 23, 1903-1909.	2.0	14
64	Major Histocompatibility Mismatch and Donor Choice for Second Allogeneic Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 1887-1894.	2.0	42
65	Notching up B-cell pathology in chronic GVHD. Blood, 2017, 130, 2053-2054.	1.4	0
66	The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2017, 23, 211-234.	2.0	328
67	Nonmyeloablative Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide for Pediatric and Young Adult Patients with High-Risk Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2017, 23, 325-332.	2.0	61
68	Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood Advances, 2017, 1, 288-292.	5.2	84
69	Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Advances, 2017, 1, 652-661.	5.2	84
70	Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia. Current Drug Targets, 2017, 18, 315-331.	2.1	39
71	Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood, 2016, 127, 2144-2154.	1.4	145
72	Might haplo "be the (better) match�. Blood, 2016, 127, 799-800.	1.4	5

#	Article	IF	CITATIONS
73	For Whom the Bell Tolls: Programmed Death 1 as a Marker of Post-Transplantation Mortality. Biology of Blood and Marrow Transplantation, 2016, 22, 2115-2116.	2.0	0
74	Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood, 2016, 128, 1013-1017.	1.4	95
75	Anti-CD45 radioimmunotherapy without TBI before transplantation facilitates persistent haploidentical donor engraftment. Blood, 2016, 127, 352-359.	1.4	29
76	Induction of Major Histocompatibility Complex-mismatched Mouse Lung Allograft Acceptance With Combined Donor Bone Marrow. Transplantation, 2016, 100, e140-e146.	1.0	5
77	How do we choose the best donor for T-cell-replete, HLA-haploidentical transplantation?. Journal of Hematology and Oncology, 2016, 9, 35.	17.0	78
78	<scp>OCTET</scp> â€ <scp>CY</scp> : a phase <scp>II</scp> study to investigate the efficacy of postâ€transplant cyclophosphamide as sole graftâ€versusâ€host prophylaxis after allogeneic peripheral blood stem cell transplantation. European Journal of Haematology, 2016, 96, 27-35.	2.2	52
79	Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Seminars in Hematology, 2016, 53, 90-97.	3.4	118
80	Therapeutic drug monitoring for either oral or intravenous busulfan when combined with pre- and post-transplantation cyclophosphamide. Leukemia and Lymphoma, 2016, 57, 666-675.	1.3	11
81	Single-Agent Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis after Human Leukocyte Antigen–Matched Related Bone Marrow Transplantation for Pediatric and Young Adult Patients with Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2016, 22. 112-118.	2.0	37
82	Modern approaches to HLA-haploidentical blood or marrow transplantation. Nature Reviews Clinical Oncology, 2016, 13, 10-24.	27.6	262
83	Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight, 2016, 1, .	5.0	111
84	Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood, 2015, 125, 4085-4094.	1.4	101
85	Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood, 2015, 125, 3024-3031.	1.4	259
86	Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood, 2015, 126, 1033-1040.	1.4	565
87	Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Science Translational Medicine, 2015, 7, 288ra78.	12.4	104
88	Comparable and Robust Immune Reconstitution after HLA-Haploidentical or HLA-Matched Allogeneic Transplantation (BMT) Utilizing Posttransplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2015, 21, S71.	2.0	8
89	Haploidentical BMT Using Fully Myeloablative Conditioning, T Cell Replete Bone Marrow Grafts, and Post-Transplant Cyclophosphamide (PT/Cy) Has Limited Toxicity and Promising Efficacy in Largest Reported Experience with High Risk Hematologic Malignancies. Biology of Blood and Marrow Transplantation. 2015. 21. S29.	2.0	9
90	Phase II Study of Nonmyeloablative Allogeneic Bone Marrow Transplantation for B Cell Lymphoma with Post-Transplantation Rituximab and Donor Selection Based First on Non-HLA Factors. Biology of Blood and Marrow Transplantation, 2015, 21, 2115-2122.	2.0	26

#	Article	IF	CITATIONS
91	Alternative Donor Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Seminars in Hematology, 2015, 52, 232-242.	3.4	20
92	Situational aldehyde dehydrogenase expression by regulatory T cells may explain the contextual duality of cyclophosphamide as both a pro-inflammatory and tolerogenic agent. Oncolmmunology, 2015, 4, e974393.	4.6	21
93	Outcomes of Nonmyeloablative HLA-Haploidentical Blood or Marrow Transplantation With High-Dose Post-Transplantation Cyclophosphamide in Older Adults. Journal of Clinical Oncology, 2015, 33, 3152-3161.	1.6	215
94	Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. Journal of Clinical Investigation, 2014, 124, 4867-4876.	8.2	173
95	Sustained CD4 ⁺ T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide. Oncolmmunology, 2014, 3, e27357.	4.6	62
96	HLA-Haploidentical Donor Lymphocyte Infusions for Patients with Relapsed Hematologic Malignancies after Related HLA-Haploidentical Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 314-318.	2.0	103
97	Experts' considerations on <scp>HLA</scp> â€haploidentical stem cell transplantation. European Journal of Haematology, 2014, 93, 187-197.	2.2	24
98	Multi-Institutional Study of Post-Transplantation Cyclophosphamide As Single-Agent Graft-Versus-Host Disease Prophylaxis After Allogeneic Bone Marrow Transplantation Using Myeloablative Busulfan and Fludarabine Conditioning. Journal of Clinical Oncology, 2014, 32, 3497-3505.	1.6	234
99	Are Alternative Donors Really Still "Alternative?― Biology of Blood and Marrow Transplantation, 2014, 20, 1463-1464.	2.0	3
100	Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans. Blood, 2014, 123, 3988-3998.	1.4	179
101	Rarity of Donor-Derived Malignancy after Allogeneic BMT with High-Dose Post-Transplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2014, 20, S252.	2.0	4
102	Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood, 2014, 124, 2131-2141.	1.4	162
103	Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood, 2014, 124, 3817-3827.	1.4	165
104	Targeting BCL6 and Germinal Centers (GCs) in Chronic Graft-Versus-Host Disease (cGVHD) Using Direct and Epigenomic Therapies. Blood, 2014, 124, 535-535.	1.4	2
105	A Selective and Potent Rock 2 Inhibitor (KD025) Decreases Human STAT3-Dependent IL-21 and IL-17 Production and Experimental Chronic Graft-Versus-Host Disease (cGVHD). Blood, 2014, 124, 540-540.	1.4	2
106	Graft-Versus-Host Disease (GVHD) and Survival Outcomes after HLA-Haploidentical (Haplo) Bone Marrow Transplant (BMT) Compare Favorably with Matched Related Donor (MRD), and Matched Unrelated Donor (MUD) BMT Utilizing High-Dose Posttransplantation Cyclophosphamide (PTCy). Blood, 2014, 124, 730-730.	1.4	5
107	Characterization of Immune Evasion Mechanisms at Diagnosis and after Chemotherapy in Patients with Acute Myeloid Leukemia. Blood, 2014, 124, 1065-1065.	1.4	0
108	Aldehyde Dehydrogenase Expression Drives Human Regulatory T Cell Resistance to Posttransplantation Cyclophosphamide. Science Translational Medicine, 2013, 5, 211ra157.	12.4	303

#	Article	IF	CITATIONS
109	Absence of Post-Transplantation Lymphoproliferative Disorder after Allogeneic Blood or Marrow Transplantation Using Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis. Biology of Blood and Marrow Transplantation, 2013, 19, 1514-1517.	2.0	103
110	Partially Mismatched Transplantation and Human Leukocyte Antigen Donor-Specific Antibodies. Biology of Blood and Marrow Transplantation, 2013, 19, 647-652.	2.0	113
111	Outcomes of Related Donor HLA-Identical or HLA-Haploidentical Allogeneic Blood or Marrow Transplantation for Peripheral T Cell Lymphoma. Biology of Blood and Marrow Transplantation, 2013, 19, 602-606.	2.0	87
112	Human leukocyte antigen-haploidentical hematopoietic stem cell transplant for a patient with histiocytic sarcoma. Leukemia and Lymphoma, 2013, 54, 655-657.	1.3	8
113	New Treatment Approaches in Acute Myeloid Leukemia: Review of Recent Clinical Studies. Reviews on Recent Clinical Trials, 2012, 7, 224-237.	0.8	7
114	HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood, 2012, 120, 4285-4291.	1.4	387
115	Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans. Blood, 2012, 119, 1570-1580.	1.4	221
116	Post-Transplantation Cyclophosphamide for Tolerance Induction in HLA-Haploidentical Bone Marrow Transplantation. Seminars in Oncology, 2012, 39, 683-693.	2.2	282
117	5-Azacytidine as Salvage Treatment in Relapsed Myeloid Tumors after Allogeneic Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, 754-758.	2.0	58
118	Role of Allogeneic Transplantation for FLT3/ITD Acute Myeloid Leukemia: Outcomes from 133 Consecutive Newly Diagnosed Patients from a Single Institution. Biology of Blood and Marrow Transplantation, 2011, 17, 1404-1409.	2.0	128
119	Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia: peripheral oligoclonal expansion of regulatory T cells. Blood, 2011, 117, 608-617.	1.4	69
120	Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation with High Dose, Post-Transplantation Cyclophosphamide. Mental Illness, 2011, 3, e15.	0.8	66
121	Desensitization for Mismatched Hematopoietic Stem Cell Transplantation (HSCT). Blood, 2011, 118, 1955-1955.	1.4	7
122	Myeloablative Haploidentical Bone Marrow Transplantation with T Cell Replete Grafts and Post-Transplant Cyclophosphamide: Results of a Phase II Clinical Trial,. Blood, 2011, 118, 4151-4151.	1.4	11
123	High-dose cyclophosphamide for graft-versus-host disease prevention. Current Opinion in Hematology, 2010, 17, 493-499.	2.5	84
124	High-dose cyclophosphamide for severe aplastic anemia: long-term follow-up. Blood, 2010, 115, 2136-2141.	1.4	107
125	High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood, 2010, 115, 3224-3230.	1.4	346
126	Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunology, Immunotherapy, 2010, 59, 137-148.	4.2	97

#	Article	IF	CITATIONS
127	High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunologic Research, 2010, 47, 65-77.	2.9	178
128	STAT3 Signaling in CD4+ T Cells Is Critical for the Pathogenesis of Chronic Sclerodermatous Graft-Versus-Host Disease in a Murine Model. Journal of Immunology, 2010, 184, 764-774.	0.8	84
129	Nonmyeloablative HLA-Haploidentical Bone Marrow Transplantation with High-Dose Posttransplantation Cyclophosphamide: Effect of HLA Disparity on Outcome. Biology of Blood and Marrow Transplantation, 2010, 16, 482-489.	2.0	260
130	Critical Role of CD4+Foxp3+ T Cells In Gvhd Prevention with High-Dose Posttransplant Cyclophosphamide (Cy) Blood, 2010, 116, 3749-3749.	1.4	3
131	Post-Transplant Cyclophosphamide and Sirolimus Are Synergistic in Preventing Rejection and Inducing Stable Mixed Chimerism Independently of Regulatory T Cells Blood, 2009, 114, 3540-3540.	1.4	1
132	The Allogeneic Effect Revisited: Exogenous Help for Endogenous, Tumor-Specific T Cells. Biology of Blood and Marrow Transplantation, 2008, 14, 499-509.	2.0	36
133	HLA-Haploidentical Bone Marrow Transplantation for Hematologic Malignancies Using Nonmyeloablative Conditioning and High-Dose, Posttransplantation Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2008, 14, 641-650.	2.0	1,525
134	Comparison of Outcomes of HLA-Matched Related, Unrelated, or HLA-Haploidentical Related Hematopoietic Cell Transplantation following Nonmyeloablative Conditioning for Relapsed or Refractory Hodgkin Lymphoma. Biology of Blood and Marrow Transplantation, 2008, 14, 1279-1287.	2.0	251
135	Post-Transplantation High Dose Cyclophosphamide (Cy) Is Effective Single Agent for Prevention of Acute and Chronic Graft Versus Host Disease after Myeloablative HLA Matched Related and Unrelated Bone Marrow Transplantation (BMT). Blood, 2008, 112, 56-56.	1.4	6
136	Factors governing the activation of adoptively transferred donor T cells infused after allogeneic bone marrow transplantation in the mouse. Blood, 2007, 109, 4564-4574.	1.4	28
137	Rapamycin Promotes Emergence of IL-10-Secreting Donor Lymphocyte Infusion-Derived T Cells Without Compromising Their Graft-Versus-Leukemia Reactivity. Transplantation, 2007, 83, 631-640.	1.0	9
138	Comparison of Allogeneic Hematopoietic Cell Transplantation (HCT) after Nonmyeloablative Conditioning with HLA-Matched Related (MRD), Unrelated (URD), and Related Haploidentical (Haplo) Donors for Relapsed or Refractory Hodgkin Lymphoma (HL) Blood, 2007, 110, 173-173.	1.4	5
139	STAT3 Signaling in Donor-Derived CD4+ T-Cells Plays a Critical Role in the Induction of Acute and Chronic GVHD in Murine Models of alloBMT Blood, 2007, 110, 2179-2179.	1.4	0
140	Graft-versus-Host Reactions and the Effectiveness of Donor Lymphocyte Infusions. Biology of Blood and Marrow Transplantation, 2006, 12, 414-421.	2.0	56
141	Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions. Journal of Immunology, 2006, 177, 4414-4425.	0.8	36
142	Nonmyeloablative alternative donor transplants. Current Opinion in Oncology, 2003, 15, 121-126.	2.4	3
143	Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood, 2003, 101, 1645-1652.	1.4	67
144	Donor Lymphocyte Infusions to Treat Hematologic Malignancies in Relapse after Allogeneic Blood or Marrow Transplantation. Cancer Control, 2002, 9, 123-137.	1.8	87

#	Article	IF	CITATIONS
145	Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biology of Blood and Marrow Transplantation, 2002, 8, 131-138.	2.0	103
146	Durable engraftment of major histocompatibility complex–incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood, 2001, 98, 3456-3464.	1.4	312
147	Hormone receptor regulation of the human immunodeficiency virus type 1 and type 2 long terminal repeats. Journal of Biomedical Science, 1996, 3, 323-331.	7.0	8