
Christopher Auger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11208708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Stress Induces Long-Term Remodeling of Adipose Tissue and Is Associated with Systemic Dysfunction. Shock, 2021, 56, 744-754.	2.1	5
2	Skin regeneration is accelerated by a lower dose of multipotent mesenchymal stromal/stem cells—a paradigm change. Stem Cell Research and Therapy, 2021, 12, 82.	5.5	15
3	Burn-induced hypermetabolism and skeletal muscle dysfunction. American Journal of Physiology - Cell Physiology, 2021, 321, C58-C71.	4.6	19
4	Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism: Clinical and Experimental, 2021, 118, 154733.	3.4	19
5	Adiposeâ€specific ATGL ablation reduces burn injuryâ€induced metabolic derangements in mice. Clinical and Translational Medicine, 2021, 11, e417.	4.0	16
6	Inhibition of Lipolysis With Acipimox Attenuates Postburn White Adipose Tissue Browning and Hepatic Fat Infiltration. Shock, 2020, 53, 137-145.	2.1	17
7	Adipose Tissue Metabolic Function and Dysfunction: Impact of Burn Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 599576.	3.7	13
8	Metformin prevents the pathological browning of subcutaneous white adipose tissue. Molecular Metabolism, 2019, 29, 12-23.	6.5	41
9	Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns. Annals of Surgery, 2019, 269, 554-563.	4.2	29
10	Metformin adapts its cellular effects to bioenergetic status in a model of metabolic dysfunction. Scientific Reports, 2018, 8, 5646.	3.3	12
11	Hepatic steatosis associated with decreased β-oxidation and mitochondrial function contributes to cell damage in obese mice after thermal injury. Cell Death and Disease, 2018, 9, 530.	6.3	21
12	The biochemical alterations underlying post-burn hypermetabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2633-2644.	3.8	74
13	What's New in Shock, February 2017?. Shock, 2017, 47, 125-127.	2.1	1
14	Hepatic mitochondrial bioenergetics in aged C57BL/6 mice exhibit delayed recovery from severe burn injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2705-2714.	3.8	13
15	The role of formate in combatting oxidative stress. Antonie Van Leeuwenhoek, 2016, 109, 263-271.	1.7	42
16	Deciphering metabolic networks by blue native polyacrylamide gel electrophoresis: A functional proteomic exploration. EuPA Open Proteomics, 2015, 7, 64-72.	2.5	15
17	Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Frontiers in Cell and Developmental Biology, 2015, 3, 40.	3.7	95
18	Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens. Microbiological Research. 2015. 171. 26-31.	5.3	40

#	Article	IF	CITATIONS
19	Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: Implications for the bioremediation of metal pollutants. Journal of Biotechnology, 2015, 200, 38-43.	3.8	17
20	Aspartate metabolism and pyruvate homeostasis triggered by oxidative stress in Pseudomonas fluorescens: a functional metabolomic study. Metabolomics, 2015, 11, 1792-1801.	3.0	19
21	A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 43-50.	2.4	29
22	Energy, the driving force behind good and ill health. Frontiers in Cell and Developmental Biology, 2014, 2, 28.	3.7	3
23	Mitochondrial lactate metabolism is involved in antioxidative defense in human astrocytoma cells. Journal of Neuroscience Research, 2014, 92, 464-475.	2.9	24
24	Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochemical and Biophysical Research Communications, 2014, 454, 172-177.	2.1	31
25	Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress. Antonie Van Leeuwenhoek, 2014, 106, 431-438.	1.7	11
26	Mitochondrial Biogenesis and Energy Production in Differentiating Murine Stem Cells: A Functional Metabolic Study. Cellular Reprogramming, 2014, 16, 84-90.	0.9	15
27	The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Analytical and Bioanalytical Chemistry, 2013, 405, 1821-1831.	3.7	11
28	How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biology and Toxicology, 2013, 29, 75-84.	5.3	71
29	Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: Enhanced production of pyruvate. Journal of Biotechnology, 2013, 167, 309-315.	3.8	48
30	Metabolic reengineering invoked by microbial systems to decontaminate aluminum: Implications for bioremediation technologies. Biotechnology Advances, 2013, 31, 266-273.	11.7	62
31	A blue native polyacrylamide gel electrophoretic technology to probe the functional proteomics mediating nitrogen homeostasis in Pseudomonas fluorescens. Journal of Microbiological Methods, 2012, 90, 206-210.	1.6	15
32	Tellurite-exposed Escherichia coli exhibits increased intracellular α-ketoglutarate. Biochemical and Biophysical Research Communications, 2012, 421, 721-726.	2.1	20
33	A facile electrophoretic technique to monitor phosphoenolpyruvateâ€dependent kinases. Electrophoresis, 2012, 33, 1095-1101.	2.4	14
34	The disruption of l-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells. Toxicology Letters, 2011, 203, 219-226.	0.8	38
35	The Metabolic Reprogramming Evoked by Nitrosative Stress Triggers the Anaerobic Utilization of Citrate in Pseudomonas fluorescens. PLoS ONE, 2011, 6, e28469.	2.5	48
36	Histidine is a source of the antioxidant, α-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiology Letters, 2010, 309, no-no.	1.8	54

#	Article	IF	CITATIONS
37	<i>Pseudomonas fluorescens</i> orchestrates a fine metabolicâ€balancing act to counter aluminium toxicity. Environmental Microbiology, 2010, 12, 1384-1390.	3.8	71
38	α-Ketoglutarate Dehydrogenase and Glutamate Dehydrogenase Work in Tandem To Modulate the Antioxidant α-Ketoglutarate during Oxidative Stress in <i>Pseudomonas fluorescens</i> . Journal of Bacteriology, 2009, 191, 3804-3810.	2.2	80
39	The Molecular Connection Between Aluminum Toxicity, Anemia, Inflammation and Obesity: Therapeutic Cues. , 0, , .		7