Joachim Gullbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11207025/publications.pdf

Version: 2024-02-01

70 papers

3,349 citations

32 h-index 149698 56 g-index

70 all docs

70 docs citations

times ranked

70

4887 citing authors

#	Article	IF	CITATIONS
1	Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Science, 2011, 102, 501-508.	3.9	293
2	Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nature Communications, 2014, 5, 3295.	12.8	197
3	Cyclotides: a novel type of cytotoxic agents. Molecular Cancer Therapeutics, 2002, 1, 365-9.	4.1	181
4	Cytotoxic Cyclotides fromViolatricolor⊥. Journal of Natural Products, 2004, 67, 144-147.	3.0	176
5	Mechanism of Action of Cytotoxic Cyclotides:Â Cycloviolacin O2 Disrupts Lipid Membranes. Journal of Natural Products, 2007, 70, 643-647.	3.0	131
6	The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69, 939-952.	2.9	131
7	Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer, 2013, 13, 331.	2.6	126
8	The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Scientific Reports, 2016, 6, 26979.	3.3	121
9	Inhibition of proteasome activity, nuclear factor-KB translocation and cell survival by the antialcoholism drug disulfiram. International Journal of Cancer, 2006, 118, 1577-1580.	5.1	111
10	Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anti-Cancer Drugs, 2001, 12, 475-483.	1.4	107
11	Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients. Biochemical Pharmacology, 2007, 73, 25-33.	4.4	99
12	The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: Discovery of an active cardiac glycoside from Urginea maritima. Journal of Ethnopharmacology, 2013, 145, 746-757.	4.1	99
13	Cytotoxic Effects of Cardiac Glycosides in Colon Cancer Cells, Alone and in Combination with Standard Chemotherapeutic Drugs. Journal of Natural Products, 2009, 72, 1969-1974.	3.0	91
14	Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor bâ€∢scp>AP15. Chemical Biology and Drug Design, 2015, 86, 1036-1048.	3.2	83
15	Melflufen - a peptidase-potentiated alkylating agent in clinical trials. Oncotarget, 2017, 8, 66641-66655.	1.8	65
16	Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2659-2665.	3.0	61
17	Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma. Investigational New Drugs, 2020, 38, 1448-1453.	2.6	58
18	The 19S Deubiquitinase Inhibitor b-AP15 Is Enriched in Cells and Elicits Rapid Commitment to Cell Death. Molecular Pharmacology, 2014, 85, 932-945.	2.3	55

#	Article	IF	CITATIONS
19	Novel activity of acriflavine against colorectal cancer tumor cells. Cancer Science, 2011, 102, 2206-2213.	3.9	54
20	Piperlongumine induces inhibition of the ubiquitin–proteasome system in cancer cells. Biochemical and Biophysical Research Communications, 2013, 431, 117-123.	2.1	53
21	Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors. International Journal of Molecular Sciences, 2015, 16, 27313-27326.	4.1	53
22	Iron chelators target both proliferating and quiescent cancer cells. Scientific Reports, 2016, 6, 38343.	3.3	52
23	A novel alkylating agent Melflufen induces irreversible <scp>DNA</scp> damage and cytotoxicity in multiple myeloma cells. British Journal of Haematology, 2016, 174, 397-409.	2.5	49
24	The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan. Biochemical Pharmacology, 2010, 79, 1281-1290.	4.4	48
25	Activity of Hydrolytic Enzymes in Tumour Cells is a Determinant for Anti-tumour Efficacy of the Melphalan Containing Prodrug 1. Journal of Drug Targeting, 2003, 11, 355-363.	4.4	41
26	Cytotoxic potency of small macrocyclic knot proteins: Structure–activity and mechanistic studies of native and chemically modified cyclotides. Organic and Biomolecular Chemistry, 2011, 9, 4306.	2.8	41
27	Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers, 2010, 94, 626-634.	2.4	39
28	Selective Cytotoxicity Evaluation in Anticancer Drug Screening of Fractionated Plant Extracts. Journal of Biomolecular Screening, 2002, 7, 333-340.	2.6	38
29	The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo. Molecular Cancer Therapeutics, 2007, 6, 2409-2417.	4.1	38
30	The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro. Investigational New Drugs, 2008, 26, 195-204.	2.6	36
31	Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors?. Drug Resistance Updates, 2015, 21-22, 20-29.	14.4	35
32	Melflufen: A Peptide–Drug Conjugate for the Treatment of Multiple Myeloma. Journal of Clinical Medicine, 2020, 9, 3120.	2.4	35
33	In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemotherapy and Pharmacology, 2012, 69, 697-707.	2.3	33
34	The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo. Biochemical Pharmacology, 2013, 86, 888-895.	4.4	33
35	Structure–Activity Relationship for Alkylating Dipeptide Nitrogen Mustard Derivatives. Oncology Research, 2003, 14, 113-132.	1.5	28
36	First-in-human, phase I/IIa clinical study of the peptidase potentiated alkylator melflufen administered every three weeks to patients with advanced solid tumor malignancies. Investigational New Drugs, 2015, 33, 1232-1241.	2.6	27

#	Article	IF	CITATIONS
37	PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas. Tumor Biology, 2014, 35, 4479-4488.	1.8	24
38	Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anti-Cancer Drugs, 2010, 21, 33-42.	1.4	23
39	Antitumor activity of the alkylating oligopeptides J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl) Tj ETQq1 1 0.78 Anti-Cancer Drugs, 2003, 14, 617-624.	4314 rgBT 1.4	Overlock 22
40	Antitumor efficacy and acute toxicity of the novel dipeptide melphalanyl-p-L-fluorophenylalanine ethyl ester (J1) in vivo. Investigational New Drugs, 2004, 22, 411-420.	2.6	22
41	Synthesis and Characterization of a Multi Ringâ€Fused 2â€Pyridoneâ€Based Fluorescent Scaffold. European Journal of Organic Chemistry, 2010, 2010, 6171-6178.	2.4	20
42	Ex Vivo Activity of Cardiac Glycosides in Acute Leukaemia. PLoS ONE, 2011, 6, e15718.	2.5	20
43	Gambogic acid is cytotoxic to cancer cells through inhibition of the ubiquitin-proteasome system. Investigational New Drugs, 2013, 31, 587-598.	2.6	19
44	Phenotype-Based Screening of Mechanistically Annotated Compounds in Combination with Gene Expression and Pathway Analysis Identifies Candidate Drug Targets in a Human Squamous Carcinoma Cell Model. Journal of Biomolecular Screening, 2006, 11, 457-468.	2.6	18
45	In vitro and in vivo activity of melflufen (J1) in lymphoma. BMC Cancer, 2016, 16, 263.	2.6	18
46	Microtubule inhibition causes epidermal growth factor receptor inactivation in oesophageal cancer cells. International Journal of Oncology, 2013, 42, 297-304.	3.3	17
47	Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics. Trends in Cancer, 2016, 2, 657-663.	7.4	17
48	Melflufen for relapsed and refractory multiple myeloma. Expert Opinion on Investigational Drugs, 2020, 29, 1069-1078.	4.1	17
49	Phenotype-based drug screening in primary ovarian carcinoma cultures identifies intracellular iron depletion as a promising strategy for cancer treatment. Biochemical Pharmacology, 2011, 82, 139-147.	4.4	16
50	Towards repositioning of quinacrine for treatment of acute myeloid leukemia – Promising synergies and in vivo effects. Leukemia Research, 2017, 63, 41-46.	0.8	16
51	Synergistic effects of combining proteasome inhibitors with chemotherapeutic drugs in lung cancer cells. BMC Research Notes, 2017, 10, 544.	1.4	16
52	ChemGPSâ€NP Mapping of Chemical Compounds for Prediction of Anticancer Mode of Action. QSAR and Combinatorial Science, 2009, 28, 436-446.	1.4	15
53	Alternative Cytotoxic Effects of the Postulated IGF-IR Inhibitor Picropodophyllin <i>In Vitro</i> Molecular Cancer Therapeutics, 2013, 12, 1526-1536.	4.1	15
54	Modulation of pyridyl cyanoguanidine (CHS 828) induced cytotoxicity by 3-aminobenzamide in U-937 GTB cells. Biochemical Pharmacology, 2002, 63, 1491-1498.	4.4	13

#	Article	IF	CITATIONS
55	Preclinical activity of melflufen (J1) in ovarian cancer. Oncotarget, 2016, 7, 59322-59335.	1.8	13
56	Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget, 2017, 8, 30217-30234.	1.8	12
57	<i>In vitro</i> and <i>in vivo</i> anti-leukemic activity of the peptidase-potentiated alkylator melflufen in acute myeloid leukemia. Oncotarget, 2017, 8, 6341-6352.	1.8	11
58	Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS ONE, 2019, 14, e0223807.	2.5	8
59	Targeting aggressive osteosarcoma with a peptidase-enhanced cytotoxic melphalan flufenamide. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592093789.	3.2	8
60	Antitumor activity of the novel melphalan containing tripeptide J3 (L-prolyl-L-melphalanyl-p-L-fluorophenylalanine ethyl ester): comparison with its m-L-sarcolysin analogue P2. Molecular Cancer Therapeutics, 2003, 2, 1331-9.	4.1	8
61	A Nonclonogenic Cytotoxicity Assay Using Primary Cultures of Patient Tumor Cells for Anticancer Drug Screening. Journal of Biomolecular Screening, 1998, 3, 207-216.	2.6	7
62	Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance. BMC Cancer, 2013, 13, 374.	2.6	7
63	Expression of possible targets for new proteasome inhibitors in diffuse large Bâ€cell lymphoma. European Journal of Haematology, 2017, 98, 52-56.	2.2	7
64	A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation. Oncotarget, 2019, 10, 5372-5382.	1.8	7
65	Newly Designed and Synthesized Curcumin Analogs with <i>in vitro</i> Cytotoxicity and Tubulin Polymerization Activity. Chemical Biology and Drug Design, 2015, 86, 80-90.	3.2	6
66	Structure-activity relationship analysis of cytotoxic cyanoguanidines: selection of CHS 828 as candidate drug. BMC Research Notes, 2009, 2, 114.	1.4	5
67	Development and characterization of two human tumor sublines expressing high-grade resistance to the cyanoguanidine CHS 828. Anti-Cancer Drugs, 2004, 15, 45-54.	1.4	4
68	Melphalan flufenamide inhibits osteoclastogenesis by suppressing proliferation of monocytes. Bone Reports, 2021, 15, 101098.	0.4	0
69	Anti-Myeloma Drug Melflufen Inhibits RANKL-Stimulated Osteoclastogenesis By Suppressing Proliferation of CD14+ Precursor Cells. Blood, 2020, 136, 23-23.	1.4	0
70	Cytotoxic activity of a new lipid formulation of doxorubicin in cell lines and primary tumor cells. Anticancer Research, 2002, 22, 4191-8.	1.1	0