Michael E Klepser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11202071/publications.pdf

Version: 2024-02-01

201674 265206 2,837 43 27 42 citations g-index h-index papers 43 43 43 1938 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Safety of aerosolized amphotericin B. Expert Opinion on Drug Safety, 2007, 6, 523-532.	2.4	478
2	Influence of Test Conditions on Antifungal Time-Kill Curve Results: Proposal for Standardized Methods. Antimicrobial Agents and Chemotherapy, 1998, 42, 1207-1212.	3.2	260
3	Unsafe and potentially safe herbal therapies. American Journal of Health-System Pharmacy, 1999, 56, 125-138.	1.0	175
4	Postantifungal Effects of Echinocandin, Azole, and Polyene Antifungal Agents against Candida albicans and Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2000, 44, 1108-1111.	3.2	175
5	In Vitro Activity of Micafungin (FK-463) against <i>Candida</i> spp.: Microdilution, Time-Kill, and Postantifungal-Effect Studies. Antimicrobial Agents and Chemotherapy, 2002, 46, 3846-3853.	3.2	146
6	In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagnostic Microbiology and Infectious Disease, 1999, 33, 75-80.	1.8	140
7	In Vitro Pharmacodynamics of Amphotericin B, Itraconazole, and Voriconazole against <i>Aspergillus</i> , <i>Fusarium</i> , and <i>Scedosporium</i> , Spp. Antimicrobial Agents and Chemotherapy, 2005, 49, 945-951.	3.2	111
8	Assessment of Patients' Perceptions and Beliefs Regarding Herbal Therapies. Pharmacotherapy, 2000, 20, 83-87.	2.6	110
9	Evaluation of Voriconazole Pharmacodynamics Using Time-Kill Methodology. Antimicrobial Agents and Chemotherapy, 2000, 44, 1917-1920.	3.2	101
10	Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagnostic Microbiology and Infectious Disease, 2002, 43, 13-17.	1.8	94
11	Assessment of Antifungal Activities of Fluconazole and Amphotericin B Administered Alone and in Combination against <1>Candida albicans by Using a Dynamic In Vitro Mycotic Infection Model. Antimicrobial Agents and Chemotherapy, 1998, 42, 1382-1386.	3.2	87
12	Consensus Summary of Aerosolized Antimicrobial Agents: Application of Guideline Criteria. Pharmacotherapy, 2010, 30, 562-584.	2.6	77
13	Antifungal dynamics of LY 303366, an investigational echinocandin B analog, against Candida ssp Diagnostic Microbiology and Infectious Disease, 1996, 26, 125-131.	1.8	70
14	Levofloxacin and trovafloxacin: the next generation of fluoroquinolones?. American Journal of Health-System Pharmacy, 1997, 54, 2569-2584.	1.0	62
15	Drug Treatment of HIV-Related Opportunistic Infections. Drugs, 1997, 53, 40-73.	10.9	56
16	Antifungal Resistance Among Candida Species. Pharmacotherapy, 2001, 21, 124S-132S.	2.6	50
17	Utilization of influenza and streptococcal pharyngitis point-of-care testing in the community pharmacy practice setting. Research in Social and Administrative Pharmacy, 2018, 14, 356-359.	3.0	50
18	Rates and Extents of Antifungal Activities of Amphotericin B, Flucytosine, Fluconazole, and Voriconazole against Candida lusitaniae Determined by Microdilution, Etest, and Time-Kill Methods. Antimicrobial Agents and Chemotherapy, 2002, 46, 578-581.	3.2	48

#	Article	IF	CITATIONS
19	Comparative Bactericidal Activities of Ciprofloxacin, Clinafloxacin, Grepafloxacin, Levofloxacin, Moxifloxacin, and Trovafloxacin against Streptococcus pneumoniae in a Dynamic In Vitro Model. Antimicrobial Agents and Chemotherapy, 2001, 45, 673-678.	3.2	47
20	Evaluation of Endpoints for Antifungal Susceptibility Determinations with LY303366. Antimicrobial Agents and Chemotherapy, 1998, 42, 1387-1391.	3.2	43
21	CandidaResistance and Its Clinical Relevance. Pharmacotherapy, 2006, 26, 68S-75S.	2.6	43
22	In vitro pharmacodynamic characteristics of flucytosine determined by time-kill methodsâ~†. Diagnostic Microbiology and Infectious Disease, 2000, 36, 101-105.	1.8	40
23	The changing face of nosocomial candidemia: epidemiology, resistance, and drug therapy. American Journal of Health-System Pharmacy, 1999, 56, 525-533.	1.0	37
24	In Vitro Pharmacodynamic Characteristics of Nystatin Including Time-Kill and Postantifungal Effect. Antimicrobial Agents and Chemotherapy, 2000, 44, 2887-2890.	3.2	37
25	Evaluation of amphotericin B and flucytosine in combination against Candida albicans and Cryptococcus neoformans using time-kill methodology. Diagnostic Microbiology and Infectious Disease, 2001, 41, 121-126.	1.8	36
26	The Rationale for Aerosolized Antibiotics. Pharmacotherapy, 2002, 22, 71S-79S.	2.6	34
27	U.S. community pharmacies as CLIA-waived facilities: Prevalence, dispersion, and impact on patient access to testing. Research in Social and Administrative Pharmacy, 2016, 12, 614-621.	3.0	33
28	Variation in Electrophoretic Karyotype and Antifungal Susceptibility of Clinical Isolates of <i>Cryptococcus neoformans</i> at a University-Affiliated Teaching Hospital from 1987 to 1994. Journal of Clinical Microbiology, 1998, 36, 3653-3656.	3.9	25
29	Growth medium effect on the antifungal activity of LY 303366. Diagnostic Microbiology and Infectious Disease, 1997, 29, 227-231.	1.8	23
30	Therapy of Candidal Infections: Susceptibility Testing, Resistance, and Therapeutic Options. Annals of Pharmacotherapy, 1998, 32, 1353-1361.	1.9	20
31	Pharmacy-based management of influenza: lessons learned from research. International Journal of Pharmacy Practice, 2018, 26, 573-578.	0.6	19
32	Impact of COVID-19 on prevalence of community pharmacies as CLIA-Waived facilities. Research in Social and Administrative Pharmacy, 2021, 17, 1574-1578.	3.0	18
33	Observation of a Pharmacist-Conducted Group A Streptococcal Pharyngitis Point-of-Care Test: A Time and Motion Study. Journal of Pharmacy Practice, 2018, 31, 284-291.	1.0	17
34	Community pharmacy-based point-of-care testing: A case study of pharmacist-physician collaborative working relationships. Research in Social and Administrative Pharmacy, 2018, 14, 112-115.	3.0	13
35	Point-of-care testing in the pharmacy: how is the field evolving?. Expert Review of Molecular Diagnostics, 2018, 18, 5-6.	3.1	12
36	The Roles of Pharmacy Schools in Bridging the Gap Between Law and Practice. American Journal of Pharmaceutical Education, 2018, 82, 6577.	2.1	10

#	Article	IF	CITATIONS
37	Pharmacy-Based Assessment and Management of Herpes Labialis (Cold Sores) with Antiviral Therapy. Innovations in Pharmacy, 2020, $11,3$.	0.6	10
38	An update on community pharmacies as CLIA-waived facilities. Research in Social and Administrative Pharmacy, 2016, 12, 666-667.	3.0	9
39	Pharmacist Prescriptive Authority for Acne: An Evidence-Based Approach to Policy. Innovations in Pharmacy, 2021, 12, 11.	0.6	9
40	Amphotericin B in Lung Transplant Recipients. Annals of Pharmacotherapy, 2002, 36, 167-169.	1.9	8
41	The impact of the COVID-19 pandemic on addressing common barriers to pharmacy-based point-of-care testing. Expert Review of Molecular Diagnostics, 2021, 21, 751-755.	3.1	3
42	Safety and Efficacy Data for High-Dose Caspofungin. Current Fungal Infection Reports, 2010, 4, 59-61.	2.6	1
43	Pharmacological and Host Considerations in the Selection of Dose and Duration of Azole Therapy for Adult Patients. Current Fungal Infection Reports, 2012, 6, 127-132.	2.6	0