
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11201181/publications.pdf Version: 2024-02-01

ANCE NZIHOU

#	Article	IF	CITATIONS
1	The X-ray, Raman and TEM Signatures of Cellulose-Derived Carbons Explained. Journal of Carbon Research, 2022, 8, 4.	2.7	8
2	Hydrogen production from biogas: Process optimization using ASPEN Plus®. International Journal of Hydrogen Energy, 2022, 47, 42027-42039.	7.1	11
3	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 2022, 212, 113495.	7.5	31
4	Incorporating hydrothermal liquefaction into wastewater treatment – Part I: Process optimization for energy recovery and evaluation of product distribution. Chemical Engineering Journal, 2022, 449, 137838.	12.7	12
5	Waterworks Sludge: An Underrated Material for Beneficial Reuse in Water and Environmental Engineering. Waste and Biomass Valorization, 2021, 12, 4239-4251.	3.4	26
6	Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review. Applied Catalysis A: General, 2021, 609, 117906.	4.3	48
7	Unraveled mechanisms in energy production from bioresources using steam gasification. Fuel, 2021, 287, 119527.	6.4	5
8	Catalytic Pyrolysis of Waste Engine Oil over Y Zeolite Synthesized from Natural Clay. Waste and Biomass Valorization, 2021, 12, 4157-4170.	3.4	3
9	Characterization of Steam Gasification Biochars from Lignocellulosic Agrowaste Towards Soil Applications. Waste and Biomass Valorization, 2021, 12, 4141-4155.	3.4	9
10	Beyond confinement effects in Fischer-Tropsch Co/CNT catalysts. Journal of Catalysis, 2021, 397, 156-171.	6.2	17
11	Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization. Water Research, 2021, 199, 117186.	11.3	106
12	Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 2021, 417, 129300.	12.7	71
13	Facile Oneâ€6tep Synthesis of Calcium Phosphate/Cellulose Composite: Synthesis, Morphology, Structure and Properties. Macromolecular Symposia, 2021, 398, 2000264.	0.7	0
14	Simultaneous hydrogen sulfide removal and wastewater purification in a novel alum sludge-based odor-gas aerated biofilter. Chemical Engineering Journal, 2021, 419, 129558.	12.7	13
15	Molten salt pyrolysis of biomass: The evaluation of molten salt. Fuel, 2021, 302, 121103.	6.4	34
16	Highly-efficient hydroxyapatite-supported nickel catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45, 18502-18518.	7.1	35
17	Hydroxyapatite as a new support material for cobalt-based catalysts in Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2020, 45, 18440-18451.	7.1	16
18	Hydrogen Spillover in the Fischerâ€Tropsch Synthesis on Carbonâ€supported Cobalt Catalysts. ChemCatChem, 2020, 12, 1117-1128.	3.7	25

#	Article	IF	CITATIONS
19	Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass. Energy, 2020, 206, 118128.	8.8	36
20	Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China. Energy, 2020, 205, 118002.	8.8	48
21	Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend Nanocomposites. Materials, 2020, 13, 2654.	2.9	13
22	Life cycle environmental assessment of thermal waste-to-energy technologies and energy–environment–economy model development. , 2020, , 111-151.		1
23	Alum sludge as an efficient sorbent for hydrogen sulfide removal: Experimental, mechanisms and modeling studies. Chemosphere, 2020, 248, 126010.	8.2	24
24	Integrating alum sludge with waste-activated sludge in co-conditioning and dewatering: a case study of a city in south France. Environmental Science and Pollution Research, 2020, 27, 14863-14871.	5.3	9
25	A Comparative Study of Hydroxyapatite―and Aluminaâ€Based Catalysts in Dry Reforming of Methane. Chemical Engineering and Technology, 2020, 43, 698-704.	1.5	14
26	Generic and Advanced Characterization Techniques. , 2020, , 31-497.		2
27	Solid Residues (Biochar, Bottom Ash, Fly Ash, …). , 2020, , 1307-1387.		0
28	Extraction and Characterization of Nanomaterials from Agrowaste. , 2020, , 841-897.		0
29	Steam gasification behavior of tropical agrowaste: A new modeling approach based on the inorganic composition. Fuel, 2019, 235, 45-53.	6.4	25
30	Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant. Waste and Biomass Valorization, 2019, 10, 1443-1458.	3.4	54
31	Catalytic Effect of Inorganic Elements on Steam Gasification Biochar Properties from Agrowastes. Energy & Fuels, 2019, 33, 8666-8675.	5.1	20
32	<i>110th Anniversary</i> : Syngas Production Enhancement Using Calcium- and Potassium-Impregnated Chars. Industrial & Engineering Chemistry Research, 2019, 58, 15134-15141.	3.7	5
33	Solar pyrolysis of heavy metal contaminated biomass for gas fuel production. Energy, 2019, 187, 116016.	8.8	27
34	Solar pyrolysis of cotton stalk in molten salt for bio-fuel production. Energy, 2019, 179, 1124-1132.	8.8	53
35	The effects of temperature and molten salt on solar pyrolysis of lignite. Energy, 2019, 181, 407-416.	8.8	43
36	The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy, 2019, 170, 326-337.	8.8	112

#	Article	IF	CITATIONS
37	Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar. Applied Energy, 2019, 237, 487-499.	10.1	50
38	Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment, 2018, 626, 744-753.	8.0	190
39	Influence of Nickel on Biomass Pyro-Gasification: Coupled Thermodynamic and Experimental Investigations. Industrial & Engineering Chemistry Research, 2018, 57, 9788-9797.	3.7	13
40	Upgrading greenhouse gases (methane and carbon dioxide) into syngas using nickel-based catalysts. Fuel, 2018, 226, 195-203.	6.4	25
41	Advanced characterization unravels the structure and reactivity of wood-based chars. Journal of Analytical and Applied Pyrolysis, 2018, 130, 79-89.	5.5	20
42	Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Applied Catalysis B: Environmental, 2018, 224, 310-321.	20.2	121
43	H2S removal from syngas using wastes pyrolysis chars. Chemical Engineering Journal, 2018, 334, 2179-2189.	12.7	90
44	Effect of the Support and Its Surface Modifications in Cobalt-Based Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 16137-16161.	3.7	53
45	Accumulators for the Capture of Heavy Metals in Thermal Conversion Systems. Journal of Environmental Engineering, ASCE, 2018, 144, 04018118.	1.4	0
46	Co-pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality. Fuel, 2018, 231, 110-117.	6.4	110
47	Catalytic cracking of ethylbenzene as tar surrogate using pyrolysis chars from wastes. Biomass and Bioenergy, 2018, 117, 86-95.	5.7	27
48	Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 2018, 203, 287-300.	9.3	127
49	A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization, 2017, 8, 267-283.	3.4	466
50	Effect of Nickel Impregnation on Wood Gasification Mechanism. Waste and Biomass Valorization, 2017, 8, 2843-2852.	3.4	25
51	Hydrogen-Rich Gas Production from Steam Gasification of Bio-char in the Presence of CaO. Waste and Biomass Valorization, 2017, 8, 2735-2746.	3.4	32
52	Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis. Bioenergy Research, 2017, 10, 832-845.	3.9	50
53	Laboratory-scale investigation of the removal of hydrogen sulfide from biogas and air using industrial waste-based sorbents. Journal of Environmental Chemical Engineering, 2017, 5, 1809-1820.	6.7	26
54	Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase. Environmental Technology (United Kingdom), 2017, 38, 2611-2620.	2.2	10

#	Article	IF	CITATIONS
55	Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel, 2017, 188, 285-293.	6.4	93
56	Multi-scale characterisation of chars mineral species for tar cracking. Fuel, 2017, 189, 88-97.	6.4	43
57	On the relevance of thermodynamics to predict the behaviour of inorganics during CO 2 gasification of willow wood. Computer Aided Chemical Engineering, 2017, , 2671-2676.	0.5	5
58	Precipitation Process of Calcium Phosphate from Calcium Carbonate Suspension. KONA Powder and Particle Journal, 2016, 33, 219-227.	1.7	9
59	Effect of Operating Parameters and Moisture Content on Municipal Solid Waste Pyrolysis and Gasification. Energy & Fuels, 2016, 30, 3994-4001.	5.1	93
60	Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites. Applied Surface Science, 2016, 390, 141-156.	6.1	33
61	Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates. Applied Surface Science, 2015, 357, 1958-1966.	6.1	16
62	Sodium Dihydrogen Phosphate Starting From Sodium Chloride and Orthophosphoric Acid Via Cation Resin Exchange. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1743-1748.	1.6	0
63	Synthesis of carbon nanotubes/hydroxyapatite composites using catalytic methane cracking. Composite Interfaces, 2015, 22, 673-687.	2.3	8
64	Metal-doped apatitic calcium phosphates: preparation, characterization, and reactivity in the removal of hydrogen sulfide from gas phase. Composite Interfaces, 2015, 22, 503-515.	2.3	4
65	Modification of Hydroxyapatite with Ion-Selective Complexants: 1-Hydroxyethane-1,1-diphosphonic Acid. Industrial & Engineering Chemistry Research, 2015, 54, 585-596.	3.7	17
66	The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Bioresource Technology, 2015, 182, 114-119.	9.6	134
67	Reactivity enhancement of gasification biochars for catalytic applications. Fuel, 2015, 159, 491-499.	6.4	40
68	Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase. Industrial & Engineering Chemistry Research, 2015, 54, 4915-4922.	3.7	10
69	Behavior of heavy metals during gasification of phytoextraction plants: thermochemical modelling. Computer Aided Chemical Engineering, 2015, , 341-346.	0.5	8
70	Influence of char composition and inorganics on catalytic activity of char from biomass gasification. Fuel, 2015, 157, 37-47.	6.4	115
71	Partitioning of Heavy Metals in Municipal Solid Waste Pyrolysis, Gasification, and Incineration. Energy & Fuels, 2015, 29, 7516-7525.	5.1	74
72	Calcium Phosphate Sorbent for Environmental Application. Procedia Engineering, 2014, 83, 423-431.	1.2	21

#	Article	IF	CITATIONS
73	Highly Porous Calcium Hydroxyapatite-based Composites for Air Pollution Control. Procedia Engineering, 2014, 83, 394-402.	1.2	8
74	Novel one-step synthesis and characterization of bone-like carbonated apatite from calcium carbonate, calcium hydroxide and orthophosphoric acid as economical starting materials. Materials Research Bulletin, 2014, 51, 236-243.	5.2	11
75	Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead(II) from an aqueous solution. Chemical Engineering Journal, 2014, 243, 280-288.	12.7	33
76	Hydroxyapatite starting from calcium carbonate and orthophosphoric acid: synthesis, characterization, and applications. Journal of Materials Science, 2014, 49, 4261-4269.	3.7	37
77	Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid. Materials Research Bulletin, 2014, 60, 292-299.	5.2	8
78	Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites. Applied Clay Science, 2014, 87, 120-128.	5.2	100
79	A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 2013, 58, 305-317.	8.8	199
80	Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chemical Engineering Journal, 2013, 232, 128-138.	12.7	46
81	One-Step Synthesis of Calcium Hydroxyapatite from Calcium Carbonate and Orthophosphoric Acid under Moderate Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 1439-1447.	3.7	35
82	Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1145-1155.	3.6	18
83	Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid. Materials Science and Engineering C, 2013, 33, 2971-2980.	7.3	21
84	The fate of heavy metals during combustion and gasification of contaminated biomass—A brief review. Journal of Hazardous Materials, 2013, 256-257, 56-66.	12.4	205
85	Synthesis, characterization, and thermo-mechanical properties of copper-loaded apatitic calcium phosphates. Composite Interfaces, 2013, 20, 647-660.	2.3	14
86	Dioxin emissions from municipal solid waste incinerators (MSWIs) in France. Waste Management, 2012, 32, 2273-2277.	7.4	71
87	Laboratory scale study of an industrial phosphate and thermal treatment for polluted dredged sediments. International Journal of Sediment Research, 2012, 27, 538-546.	3.5	10
88	Catalyst Properties and Catalytic Performance of Char from Biomass Gasification. Industrial & Engineering Chemistry Research, 2012, 51, 13113-13122.	3.7	117
89	Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1080-1089.	3.5	60
90	Apatitic calcium phosphates: Synthesis, characterization and reactivity in the removal of lead(II) from aqueous solution. Chemical Engineering Journal, 2012, 198-199, 180-190.	12.7	30

#	Article	IF	CITATIONS
91	Rheological Behavior of Gypsum, Plaster, and Hydroxyapatite Gel Blends. Industrial & Engineering Chemistry Research, 2012, 51, 11163-11169.	3.7	4
92	Synthetic fuels from biomass using concentrated solar energy – A review. Energy, 2012, 42, 121-131.	8.8	132
93	Beneficial Use of Ash and Char From Biomass Gasification. , 2011, , .		9
94	Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites. Waste and Biomass Valorization, 2010, 1, 163-174.	3.4	103
95	Toward the Valorization of Waste and Biomass. Waste and Biomass Valorization, 2010, 1, 3-7.	3.4	33
96	Waste Valorization, Loop losing, and Industrial Ecology. Journal of Industrial Ecology, 2010, 14, 196-199.	5.5	15
97	Convenient conversion of calcium carbonate to hydroxyapatite at ambient pressure. Materials Science and Engineering C, 2009, 29, 771-773.	7.3	39
98	Trapping heavy metals by using calcium hydroxyapatite and dielectrophoresis. Journal of Hazardous Materials, 2007, 139, 461-466.	12.4	21
99	Preparation of high specific surface area hydroxyapatite for environmental applications. Journal of Materials Science, 2007, 42, 6062-6066.	3.7	47
100	Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash. Journal of Hazardous Materials, 2004, 116, 65-74.	12.4	44
101	Calcium phosphate stabilization of fly ash with chloride extraction. Waste Management, 2002, 22,	7.4	78