Daniel A Starr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119944/publications.pdf

Version: 2024-02-01

117625 189892 4,761 54 34 50 h-index citations g-index papers 57 57 57 3527 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. ELife, $2021, 10, .$	6.0	21
2	Membrane fusion drives pronuclear meeting in the one-cell embryo. Journal of Cell Biology, 2020, 219,	5.2	2
3	is dispensable for both nuclear anchorage and migration in. MicroPublication Biology, 2020, 2020, .	0.1	O
4	A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout <i>Caenorhabditis elegans</i> development. Experimental Biology and Medicine, 2019, 244, 1323-1332.	2.4	19
5	Role of KASH domain lengths in the regulation of LINC complexes. Molecular Biology of the Cell, 2019, 30, 2076-2086.	2.1	16
6	SUN/KASH interactions facilitate force transmission across the nuclear envelope. Nucleus, 2019, 10, 73-80.	2.2	41
7	Length of KASH Domains Affect Linc Complex Functions. Biophysical Journal, 2019, 116, 412a.	0.5	O
8	Conserved SUN-KASH Interfaces Mediate LINC Complex-Dependent Nuclear Movement and Positioning. Current Biology, 2018, 28, 3086-3097.e4.	3.9	52
9	The E3 Ubiquitin Ligase MIB-1 Is Necessary To Form the Nuclear Halo in <i>Caenorhabditis elegans</i> Sperm. G3: Genes, Genomes, Genetics, 2018, 8, 2465-2470.	1.8	4
10	Genetic Analysis of Nuclear Migration and Anchorage to Study LINC Complexes During Development of Caenorhabditis elegans. Methods in Molecular Biology, 2018, 1840, 163-180.	0.9	18
11	Characterizing Dynein's Role in P-cell Nuclear Migration using an Auxin-Induced Degradation System. MicroPublication Biology, 2018, 2018, .	0.1	O
12	TorsinA regulates the LINC to moving nuclei. Journal of Cell Biology, 2017, 216, 543-545.	5.2	7
13	Muscle Development: Nucleating Microtubules at the Nuclear Envelope. Current Biology, 2017, 27, R1071-R1073.	3.9	14
14	LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. Journal of Cell Biology, 2016, 215, 801-821.	5.2	48
15	Nuclear migration events throughout development. Journal of Cell Science, 2016, 129, 1951-1961.	2.0	102
16	Nuclei migrate through constricted spaces using microtubule motors and actin networks in <i>C. elegans</i> hypodermal cells. Development (Cambridge), 2016, 143, 4193-4202.	2.5	35
17	Nuclei migrate through constricted spaces using microtubule motors and actin networks in <i>C. elegans</i> hypodermal cells. Journal of Cell Science, 2016, 129, e1.1-e1.1.	2.0	O
18	SUN proteins and nuclear envelope spacing. Nucleus, 2015, 6, 2-7.	2.2	39

#	Article	IF	Citations
19	The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. Journal of Cell Biology, 2014, 206, 163-172.	5.2	49
20	The i>Caenorhabditis elegans i>SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Molecular Biology of the Cell, 2014, 25, 2853-2865.	2.1	60
21	KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Current Opinion in Cell Biology, 2014, 28, 69-75.	5.4	120
22	Connecting the nucleus to the cytoskeleton by SUN–KASH bridges across the nuclear envelope. Current Opinion in Cell Biology, 2013, 25, 57-62.	5 . 4	184
23	toca-1 Is in a Novel Pathway That Functions in Parallel with a SUN-KASH Nuclear Envelope Bridge to Move Nuclei in Caenorhabditis elegans. Genetics, 2013, 193, 187-200.	2.9	20
24	Laminopathies: Too Much SUN Is a Bad Thing. Current Biology, 2012, 22, R678-R680.	3.9	15
25	A High-Resolution C.Âelegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue. Cell, 2011, 145, 470-482.	28.9	193
26	Watching nuclei move. Bioarchitecture, 2011, 1, 9-13.	1.5	12
27	KASH and SUN proteins. Current Biology, 2011, 21, R414-R415.	3.9	48
28	Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Molecular Biology of the Cell, 2011, 22, 4324-4334.	2.1	105
29	Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane. Molecular Biology of the Cell, 2011, 22, 1739-1752.	2.1	39
30	Nuclear cell biology. Molecular Biology of the Cell, 2011, 22, 722-722.	2.1	1
31	Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. Journal of Cell Biology, 2010, 191, 115-128.	5. 2	137
32	UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Developmental Biology, 2010, 338, 237-250.	2.0	121
33	Nuclei Get TAN Lines. Science, 2010, 329, 909-910.	12.6	3
34	Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges. Annual Review of Cell and Developmental Biology, 2010, 26, 421-444.	9.4	497
35	KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. Journal of Cell Science, 2009, 122, 2895-2905.	2.0	46
36	A nuclear-envelope bridge positions nuclei and moves chromosomes. Journal of Cell Science, 2009, 122, 577-586.	2.0	185

#	Article	IF	CITATIONS
37	UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development (Cambridge), 2009, 136, 2725-2733.	2.5	91
38	Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope. Developmental Biology, 2009, 327, 433-446.	2.0	47
39	A Genetic Approach to Study the Role of Nuclear Envelope Components in Nuclear Positioning. Novartis Foundation Symposium, 2008, , 208-226.	1.1	22
40	Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Molecular BioSystems, 2007, 3, 583.	2.9	78
41	The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Developmental Biology, 2006, 289, 336-345.	2.0	62
42	UNC-83 Is a KASH Protein Required for Nuclear Migration and Is Recruited to the Outer Nuclear Membrane by a Physical Interaction with the SUN Protein UNC-84. Molecular Biology of the Cell, 2006, 17, 1790-1801.	2.1	124
43	KASH 'n Karry: The KASH domain family of cargo-specific cytoskeletal adaptor proteins. BioEssays, 2005, 27, 1136-1146.	2.5	150
44	Syne proteins anchor muscle nuclei at the neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4359-4364.	7.1	193
45	A genetic approach to study the role of nuclear envelope components in nuclear positioning. Novartis Foundation Symposium, 2005, 264, 208-19; discussion 219-230.	1.1	10
46	ANChors away: an actin based mechanism of nuclear positioning. Journal of Cell Science, 2003, 116, 211-216.	2.0	206
47	Role of ANC-1 in Tethering Nuclei to the Actin Cytoskeleton. Science, 2002, 298, 406-409.	12.6	373
48	Lamin-dependent Localization of UNC-84, A Protein Required for Nuclear Migration inCaenorhabditis elegans. Molecular Biology of the Cell, 2002, 13, 892-901.	2.1	153
49	<i>unc-83</i> encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development (Cambridge), 2001, 128, 5039-5050.	2.5	143
50	The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. Journal of Cell Science, 2001, 114, 3103-3114.	2.0	74
51	Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. Journal of Cell Science, 2001, 114, 3529-3542.	2.0	252
52	Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biology, 2000, 2, 944-947.	10.3	185
53	ZW10 Helps Recruit Dynactin and Dynein to the Kinetochore. Journal of Cell Biology, 1998, 142, 763-774.	5.2	241
54	Conservation of the Centromere/Kinetochore Protein ZW10. Journal of Cell Biology, 1997, 138, 1289-1301.	5.2	104