List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 2014, 514, 47-53.	27.8	883
2	Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 4885-4893.	3.2	564
3	Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides provides protection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18030-18035.	7.1	344
4	Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1088-1099.	3.2	344
5	FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection. Science Translational Medicine, 2013, 5, 190ra79.	12.4	285
6	Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.	12.8	258
7	Ebola Virusâ€Like Particle–Based Vaccine Protects Nonhuman Primates against Lethal Ebola Virus Challenge. Journal of Infectious Diseases, 2007, 196, S430-S437.	4.0	236
8	A screen of approved drugs and molecular probes identifies therapeutics with anti–Ebola virus activity. Science Translational Medicine, 2015, 7, 290ra89.	12.4	212
9	Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20690-20694.	7.1	210
10	CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nature Medicine, 2011, 17, 1128-1131.	30.7	200
11	Therapeutic Intervention of Ebola Virus Infection in Rhesus Macaques with the MB-003 Monoclonal Antibody Cocktail. Science Translational Medicine, 2013, 5, 199ra113.	12.4	199
12	Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infectious Diseases, The, 2015, 15, 905-912.	9.1	193
13	Interferon-Î ² and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. Journal of General Virology, 2014, 95, 571-577.	2.9	191
14	Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17182-17187.	7.1	173
15	Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs, 2017, 77, 1935-1966.	10.9	156
16	Gene-Specific Countermeasures against Ebola Virus Based on Antisense Phosphorodiamidate Morpholino Oligomers. PLoS Pathogens, 2006, 2, e1.	4.7	137
17	Induction of Humoral and CD8+ T Cell Responses Are Required for Protection against Lethal Ebola Virus Infection. Journal of Immunology, 2005, 175, 1184-1191.	0.8	126
18	Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection. PLoS ONE, 2013, 8, e56265.	2.5	123

#	Article	IF	CITATIONS
19	Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. Journal of General Virology, 2005, 86, 2535-2542.	2.9	109
20	Comparison of the plaque assay and 50% tissue culture infectious dose assay as methods for measuring filovirus infectivity. Journal of Virological Methods, 2013, 193, 565-571.	2.1	103
21	Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine, 2016, 8, 326ra21.	12.4	102
22	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	2.1	99
23	The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005540.	3.0	97
24	Interferon-β Therapy Prolongs Survival in Rhesus Macaque Models of Ebola and Marburg Hemorrhagic Fever. Journal of Infectious Diseases, 2013, 208, 310-318.	4.0	93
25	Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses. Journal of Virology, 2006, 80, 7235-7244.	3.4	92
26	Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Research, 2010, 87, 187-194.	4.1	92
27	Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists. Journal of Virology, 2015, 89, 9932-9938.	3.4	90
28	Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus. Journal of Virology, 2013, 87, 4952-4964.	3.4	87
29	Pathology of Experimental Aerosol Zaire Ebolavirus Infection in Rhesus Macaques. Veterinary Pathology, 2013, 50, 514-529.	1.7	87
30	Protective Cytotoxic T-Cell Responses Induced by Venezuelan Equine Encephalitis Virus Replicons Expressing Ebola Virus Proteins. Journal of Virology, 2005, 79, 14189-14196.	3.4	81
31	Filovirusâ€Like Particles Produced in Insect Cells: Immunogenicity and Protection in Rodents. Journal of Infectious Diseases, 2007, 196, S421-S429.	4.0	79
32	High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection. Journal of Infectious Diseases, 2011, 203, 175-179.	4.0	78
33	Bacterial Vaginosis–Associated Microflora Isolated From the Female Genital Tract Activates HIV-1 Expression. Journal of Acquired Immune Deficiency Syndromes (1999), 1999, 21, 194.	2.1	75
34	The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Research, 2014, 112, 1-7.	4.1	72
35	MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science, 2020, 370, 241-247.	12.6	72
36	Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. Antiviral Research, 2014, 107, 102-109.	4.1	69

#	Article	IF	CITATIONS
37	Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the MB-003 Antibody Cocktail. Cell Reports, 2015, 12, 2111-2120.	6.4	68
38	3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology, 2016, 490, 49-58.	2.4	67
39	Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. Journal of Clinical Investigation, 2015, 125, 3241-3255.	8.2	67
40	Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors. PLoS ONE, 2013, 8, e60838.	2.5	67
41	Ebola Virus Exploits a Monocyte Differentiation Program To Promote Its Entry. Journal of Virology, 2013, 87, 3801-3814.	3.4	60
42	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	2.1	59
43	Standardization of the Filovirus Plaque Assay for Use in Preclinical Studies. Viruses, 2012, 4, 3511-3530.	3.3	58
44	Post-exposure therapy of filovirus infections. Trends in Microbiology, 2014, 22, 456-463.	7.7	58
45	Zaire Ebola virus entry into human dendritic cells is insensitive to cathepsin L inhibition. Cellular Microbiology, 2010, 12, 148-157.	2.1	56
46	Aerosol Exposure to Rift Valley Fever Virus Causes Earlier and More Severe Neuropathology in the Murine Model, which Has Important Implications for Therapeutic Development. PLoS Neglected Tropical Diseases, 2013, 7, e2156.	3.0	55
47	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	2.1	54
48	Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry. Journal of Virology, 2015, 89, 5441-5449.	3.4	54
49	Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virology Journal, 2007, 4, 108.	3.4	53
50	A Novel L-ficolin/Mannose-binding Lectin Chimeric Molecule with Enhanced Activity against Ebola Virus. Journal of Biological Chemistry, 2010, 285, 24729-24739.	3.4	51
51	Viral Hemorrhagic Fever Diagnostics. Clinical Infectious Diseases, 2016, 62, 214-219.	5.8	50
52	CD4-Negative Cells Bind Human Immunodeficiency Virus Type 1 and Efficiently Transfer Virus to T Cells. Journal of Virology, 2000, 74, 8550-8557.	3.4	49
53	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
54	Identification of Combinations of Approved Drugs With Synergistic Activity Against Ebola Virus in Cell Cultures. Journal of Infectious Diseases, 2018, 218, S672-S678.	4.0	49

GENE G OLINGER

#	Article	IF	CITATIONS
55	Antibody therapeutics for Ebola virus disease. Current Opinion in Virology, 2016, 17, 45-49.	5.4	45
56	Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. MBio, 2021, 12, e0334721.	4.1	45
57	Potential Vaccines and Post-Exposure Treatments for Filovirus Infections. Viruses, 2012, 4, 1619-1650.	3.3	44
58	The lipid moiety of brincidofovir is required for inÂvitro antiviral activity against Ebola virus. Antiviral Research, 2016, 125, 71-78.	4.1	44
59	Project IDentif.Al: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention. Advanced Therapeutics, 2020, 3, 2000034.	3.2	44
60	Ebola Virus Inactivation with Preservation of Antigenic and Structural Integrity by a Photoinducible Alkylating Agent. Journal of Infectious Diseases, 2007, 196, S276-S283.	4.0	41
61	Inhibition of Ebola Virus by a Molecularly Engineered Banana Lectin. PLoS Neglected Tropical Diseases, 2019, 13, e0007595.	3.0	38
62	Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs. PLoS Pathogens, 2015, 11, e1005016.	4.7	36
63	Real-time Monitoring of Cardiovascular Function in Rhesus Macaques Infected With Zaire ebolavirus. Journal of Infectious Diseases, 2011, 204, S1000-S1010.	4.0	33
64	Nonhuman Primate Models of Ebola Virus Disease. Current Topics in Microbiology and Immunology, 2017, 411, 171-193.	1.1	33
65	Association of indicators of bacterial vaginosis with a female genital tract factor that induces expression of HIV-1. Aids, 1999, 13, 1905-1912.	2.2	31
66	Vaccinating captive chimpanzees to save wild chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8873-8876.	7.1	31
67	Testing therapeutics in cell-based assays: Factors that influence the apparent potency of drugs. PLoS ONE, 2018, 13, e0194880.	2.5	31
68	Filoviruses and the Balance of Innate, Adaptive, and Inflammatory Responses. Viral Immunology, 2006, 19, 602-612.	1.3	28
69	Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus. PLoS ONE, 2016, 11, e0166318.	2.5	28
70	The Calcium Channel Blocker Bepridil Demonstrates Efficacy in the Murine Model of Marburg Virus Disease. Journal of Infectious Diseases, 2018, 218, S588-S591.	4.0	28
71	Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	27
72	Use of the Filovirus Animal Non-Clinical Group (FANG) Ebola virus immuno-assay requires fewer study participants to power a study than the Alpha Diagnostic International assay. Journal of Virological Methods, 2018, 255, 84-90.	2.1	26

#	Article	IF	CITATIONS
73	Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. Journal of Virology, 2017, 91, .	3.4	23
74	In Vitro and In Vivo Activity of Amiodarone Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, S592-S596.	4.0	21
75	High dose sertraline monotherapy fails to protect rhesus macaques from lethal challenge with Ebola virus Makona. Scientific Reports, 2017, 7, 5886.	3.3	20
76	Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate. Journal of Infectious Diseases, 2018, 218, S636-S648.	4.0	19
77	Human Antibodies to Major Histocompatibility Complex Alloantigens Mediate Lysis and Neutralization of HIV-1 Primary Isolate Virions in the Presence of Complement. Journal of Acquired Immune Deficiency Syndromes (1999), 2001, 26, 103-110.	2.1	17
78	Significance of High-Containment Biological Laboratories Performing Work During the COVID-19 Pandemic: Biosafety Level-3 and -4 Labs. Frontiers in Bioengineering and Biotechnology, 2021, 9, 720315.	4.1	16
79	Fighting Ebola with novel spore decontamination technologies for the military. Frontiers in Microbiology, 2015, 6, 663.	3.5	15
80	Lack of Effect of Lamivudine on Ebola Virus Replication. Emerging Infectious Diseases, 2015, 21, 550-552.	4.3	14
81	Formulation, Stability, Pharmacokinetic, and Modeling Studies for Tests of Synergistic Combinations of Orally Available Approved Drugs against Ebola Virus In Vivo. Microorganisms, 2021, 9, 566.	3.6	13
82	Cellular Factors Influence the Binding of HIV Type 1 to Cells. AIDS Research and Human Retroviruses, 2002, 18, 259-267.	1.1	12
83	The Convergence of High-Consequence Livestock and Human Pathogen Research and Development: A Paradox of Zoonotic Disease. Tropical Medicine and Infectious Disease, 2018, 3, 55.	2.3	10
84	Discovery of common marburgvirus protective epitopes in a BALB/c mouse model. Virology Journal, 2009, 6, 132.	3.4	9
85	Interferon-β and Interferon-γ Are Weak Inhibitors of Ebola Virus in Cell-Based Assays. Journal of Infectious Diseases, 2017, 215, 1416-1420.	4.0	9
86	Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice. Viruses, 2019, 11, 161.	3.3	8
87	Infectious Disease Risks and Vulnerabilities in the Aftermath of an Environmental Disaster in Minas Gerais, Brazil. Vector-Borne and Zoonotic Diseases, 2020, 20, 387-389.	1.5	8
88	COVID-19 vaccines: Global challenges and prospects forum recommendations. International Journal of Infectious Diseases, 2021, 105, 448-451.	3.3	7
89	Enhancing laboratory capacity during Ebola virus disease (EVD) heightened surveillance in Liberia: lessons learned and recommendations. Pan African Medical Journal, 2019, 33, 8.	0.8	7
90	Letter to the Editor. AIDS Research and Human Retroviruses, 1999, 15, 1713-1715.	1.1	6

GENE G OLINGER

# ARTICLE		IF	CITATIONS
91 Donor va	ariability in HIV binding to peripheral blood mononuclear cells. Virology Journal, 2008, 5, 95.	3.4	6
92 Theraper 263-290	utics Against Filovirus Infection. Current Topics in Microbiology and Immunology, 2017, 411,	1.1	3
93 Avian Inf 93 16, 143-	luenza Is a Catalyst for Economic and Political Destabilization in Iran. Health Security, 2018, 143.	1.8	1
94 First Mo Industry	vers in Molecular Detection: Case Comparison on Harnessing Research and Development, and Entrepreneurship. Frontiers in Medicine, 2021, 8, 639440.	2.6	1
95 Filovirus	es. , 2014, , 65-80.		0