Yael Laitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1119145/publications.pdf Version: 2024-02-01

Υλει Ι λιτμανι

#	Article	IF	CITATIONS
1	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
2	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	7.4	390
3	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
4	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
5	Mutational spectrum in a worldwide study of 29,700 families with <i>BRCA1</i> or <i>BRCA2</i> mutations. Human Mutation, 2018, 39, 593-620.	2.5	224
6	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
7	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
8	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
9	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
10	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
11	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82
12	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
13	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	3.5	47
14	Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations. European Journal of Human Genetics, 2013, 21, 212-216.	2.8	44
15	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	5.0	42
16	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	2.5	34
17	The spectrum of <i>BRCA1</i> and <i>BRCA2</i> pathogenic sequence variants in Middle Eastern, North African, and South European countries. Human Mutation, 2019, 40, e1-e23.	2.5	34
18	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32

Yael Laitman

#	Article	IF	CITATIONS
19	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
20	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30
21	The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genetics, 2016, 209, 70-74.	0.4	29
22	Uterine cancer in Jewish Israeli <i>BRCA1/2</i> mutation carriers. Cancer, 2019, 125, 698-703.	4.1	28
23	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
24	An international survey of surveillance schemes for unaffected BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2016, 157, 319-327.	2.5	26
25	Germline mutations in BRCA1 and BRCA2 genes in ethnically diverse high risk families in Israel. Breast Cancer Research and Treatment, 2011, 127, 489-495.	2.5	25
26	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	2.5	22
27	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
28	Recurrent germline mutations in BRCA1 and BRCA2 genes in high risk families in Israel. Breast Cancer Research and Treatment, 2012, 133, 1153-1157.	2.5	18
29	The rate of recurrent BRCA1, BRCA2, and TP53 mutations in the general population, and unselected ovarian cancer cases, in Belo Horizonte, Brazil. Cancer Genetics, 2016, 209, 50-52.	0.4	18
30	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
31	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	2.5	18
32	<i>GREM1</i> germline mutation screening in Ashkenazi Jewish patients with familial colorectal cancer. Genetical Research, 2015, 97, e11.	0.9	17
33	Radiation-Associated Secondary Malignancies in BRCA Mutation Carriers Treated for Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 107, 353-359.	0.8	17
34	Locoregional Treatments and Ipsilateral Breast Cancer Recurrence Rates in BRCA1/2 Mutation Carriers. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1332-1340.	0.8	15
35	Cancer risks in Jewish male BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2015, 150, 631-635.	2.5	14
36	Activating genomic alterations in the Gs alpha gene (<scp><i>GNAS</i></scp>) in 274 694 tumors. Genes Chromosomes and Cancer, 2020, 59, 503-516.	2.8	14

YAEL LAITMAN

#	Article	IF	CITATIONS
37	Haplotype of the C61G <i>BRCA1</i> Mutation in Polish and Jewish Individuals. Genetic Testing and Molecular Biomarkers, 2009, 13, 465-469.	0.7	13
38	Inherited predisposition to breast and ovarian cancer in non-Jewish populations in Israel. Breast Cancer Research and Treatment, 2017, 166, 881-885.	2.5	12
39	Common Susceptibility Loci for Male Breast Cancer. Journal of the National Cancer Institute, 2021, 113, 453-461.	6.3	12
40	The spectrum of tumors harboring BAP1 gene alterations. Cancer Genetics, 2021, 256-257, 31-35.	0.4	12
41	Phenotypic characteristics of colorectal cancer in BRCA1/2 mutation carriers. European Journal of Human Genetics, 2018, 26, 382-386.	2.8	11
42	Germline CHEK2 mutations in Jewish Ashkenazi women at high risk for breast cancer. Israel Medical Association Journal, 2007, 9, 791-6.	0.1	11
43	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	2.5	10
44	Breast cancer surveillance for BRCA1/2 mutation carriers – is "early detection―early enough?. Breast, 2020, 49, 81-86.	2.2	10
45	Germline variant in REXO2 is a novel candidate gene in familial pheochromocytoma. Genetical Research, 2020, 102, e3.	0.9	10
46	The founder Ashkenazi Jewish mutations in the MSH2 and MSH6 genes in Israeli patients with gastric and pancreatic cancer. Familial Cancer, 2012, 11, 243-247.	1.9	9
47	The yield of targeted genotyping for the recurring mutations in BRCA1/2 in Israel. Breast Cancer Research and Treatment, 2018, 167, 697-702.	2.5	9
48	Effects of "real life―prostate MRI inter-observer variability on total needle samples and indication for biopsy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 793.e13-793.e18.	1.6	9
49	The KL-VS sequence variant of Klotho and cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2012, 132, 1119-1126.	2.5	8
50	Colorectal and Endometrial Cancer Risk and Age at Diagnosis in BLMAsh Mutation Carriers. Israel Medical Association Journal, 2017, 19, 365-367.	0.1	8
51	Multigene panel testing in unselected Israeli breast cancer cases: mutational spectrum and use of BRCA1/2 mutation prediction algorithms. Breast Cancer Research and Treatment, 2019, 176, 165-170.	2.5	7
52	<p>Clinical Characteristics and Prognosis of Gastric Cancer Patients with BRCA 1/2 Germline Mutations: Report of Ten Cases and a Literature Review</p> . OncoTargets and Therapy, 2020, Volume 13, 11637-11644.	2.0	7
53	Diagnostic yield of multigene panel testing in an Israeli cohort: enrichment of low-penetrance variants. Breast Cancer Research and Treatment, 2020, 181, 445-453.	2.5	7
54	Time trends in uptake rates of risk-reducing mastectomy in Israeli asymptomatic BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2021, 185, 391-399.	2.5	7

YAEL LAITMAN

#	Article	IF	CITATIONS
55	Genome Sequencing of Multiple Primary Tumors Reveals a Novel <i>PALB2</i> Variant. Journal of Clinical Oncology, 2016, 34, e61-e67.	1.6	6
56	Primary Peritoneal Serous Carcinoma in Men: A Rare and Non-BRCA-associated Entity. Anticancer Research, 2017, 37, 3069-3072.	1.1	6
57	<i>FMR1</i> CGG allele length in Israeli <i>BRCA1</i> / <i>BRCA2</i> mutation carriers and the general population display distinct distribution patterns. Genetical Research, 2014, 96, e11.	0.9	5
58	Mutational analysis of candidate genes in Israeli male breast cancer cases. Breast Cancer Research and Treatment, 2018, 170, 399-404.	2.5	5
59	The rate of the recurrent MSH6 mutations in Ashkenazi Jewish breast cancer patients. Cancer Causes and Control, 2019, 30, 97-101.	1.8	5
60	De novo pathogenic germline variant in PALB2 in a patient with pancreatic cancer. Familial Cancer, 2020, 19, 193-196.	1.9	5
61	Circulating cell-free DNA (cfDNA) levels in BRCA1 and BRCA2 mutation carriers: A preliminary study. Cancer Biomarkers, 2020, 28, 269-273.	1.7	4
62	Re-evaluating cancer risks associated with the CHEK2 p.Ser428Phe Ashkenazi Jewish founder pathogenic variant. Familial Cancer, 2022, 21, 305-308.	1.9	4
63	De novo mutation in MEN1 is not associated with parental somatic mosaicism. Endocrine-Related Cancer, 2017, 24, L1-L3.	3.1	3
64	Histology results of systematic prostate biopsies by in-bore magnetic resonance imaging vs. transrectal ultrasound. Canadian Urological Association Journal, 2020, 15, E244-E247.	0.6	3
65	Reâ€evaluating the pathogenicity of the c.783+2T>C BAP1 germline variant. Human Mutation, 2021, 42, 592-599.	2.5	3
66	The rate of recurrent BRCA1, BRCA2, and TP53 mutations in the general population, and unselected ovarian cancer cases, in Belo Horizonte, Brazil. Cancer Genetics, 2016, 209, 283-284.	0.4	2
67	Abnormal Findings Detected by Multi-modality Breast Imaging and Biopsy Results in a High-risk Clinic. Clinical Breast Cancer, 2018, 18, e695-e698.	2.4	2
68	Are VNTRs co-localizing with breast cancer-associated SNPs?. Breast Cancer Research and Treatment, 2018, 168, 277-281.	2.5	2
69	Double heterozygosity for TP53 and BRCA1 mutations: clinical implications in populations with founder mutations. Breast Cancer Research and Treatment, 2021, 186, 259-263.	2.5	2
70	Age at diagnosis of cancer in 185delAG BRCA1 mutation carriers of diverse ethnicities: tentative evidence for modifier factors. Familial Cancer, 2020, 20, 189-194.	1.9	1
71	Yield of targeted genotyping for the recurring pathogenic variants in cancer susceptibility genes in a healthy, multiethnic Israeli population. Cancer, 2021, 127, 3599-3604.	4.1	1
72	Populationâ€based screening of Uruguayan Ashkenazi Jews for recurrent <i>BRCA1</i> and <i>BRCA2</i> pathogenic sequence variants. Molecular Genetics & Genomic Medicine, 2022, , e1928.	1.2	1

#	Article	IF	CITATIONS
73	A genetic variant of 5-hydroxytryptamine receptor 3C (HTR3C): A novel link to chemotherapy-induced side effects Journal of Clinical Oncology, 2013, 31, 9630-9630.	1.6	0