Zhengfu Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11186107/publications.pdf Version: 2024-02-01

ΖΗΕΝΟΕΊ ΧΙΙ

#	Article	IF	CITATIONS
1	Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar conservation laws. Mathematics of Computation, 2018, 88, 691-716.	2.1	4
2	High Order Maximum Principle Preserving Finite Volume Method for Convection Dominated Problems. Journal of Scientific Computing, 2016, 67, 795-820.	2.3	11
3	Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations. Journal of Scientific Computing, 2016, 67, 1066-1088.	2.3	53
4	An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations. Journal of Scientific Computing, 2016, 68, 171-190.	2.3	14
5	Positivity-Preserving Finite Difference Weighted ENO Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations. SIAM Journal of Scientific Computing, 2015, 37, A1825-A1845.	2.8	43
6	Local Discontinuous Galerkin Methods for the Functionalized Cahn–Hilliard Equation. Journal of Scientific Computing, 2015, 63, 913-937.	2.3	14
7	High Order Maximum-Principle-Preserving Discontinuous Galerkin Method for Convection-Diffusion Equations. SIAM Journal of Scientific Computing, 2015, 37, A583-A608.	2.8	31
8	High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. Journal of Computational Physics, 2015, 281, 334-351.	3.8	37
9	Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws. Journal of Scientific Computing, 2014, 58, 41-60.	2.3	35
10	High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. Journal of Computational Physics, 2014, 273, 618-639.	3.8	39
11	A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. Journal of Computational Physics, 2013, 252, 310-331.	3.8	43
12	Parametrized Maximum Principle Preserving Limiter for Finite Difference WENO Schemes Solving Convection-Dominated Diffusion Equations. SIAM Journal of Scientific Computing, 2013, 35, A2524-A2553.	2.8	18
13	Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Mathematics of Computation, 2013, 83, 2213-2238.	2.1	69
14	Variational Models of Network Formation and Ion Transport: Applications to Perfluorosulfonate Ionomer Membranes. Polymers, 2012, 4, 630-655.	4.5	33
15	Continuation Finite Element Simulation of Second Harmonic Generation in Photonic Crystals. Communications in Computational Physics, 2011, 10, 57-69.	1.7	2
16	A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 2347.	1.5	13
17	Anti-diffusive flux corrections for high order finite difference WENO schemes. Journal of Computational Physics, 2005, 205, 458-485.	3.8	122