Ethan A Merritt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11185356/publications.pdf

Version: 2024-02-01

		109321	1	133252	
59	9,070	35		59	
papers	citations	h-index		g-index	
60	60	60		0.653	
60	60	60		9653	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Methionyl-tRNA synthetase inhibitor has potent <i>in vivo</i> activity in a novel <i>Giardia lamblia</i> luciferase murine infection model. Journal of Antimicrobial Chemotherapy, 2020, 75, 1218-1227.	3.0	12
2	Nek8445, a protein kinase required for microtubule regulation and cytokinesis in <i>Giardia lamblia</i> . Molecular Biology of the Cell, 2020, 31, 1611-1622.	2.1	14
3	A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Molecular Cell, 2019, 74, 393-408.e20.	9.7	45
4	Toxoplasma Calcium-Dependent Protein Kinase 1 Inhibitors: Probing Activity and Resistance Using Cellular Thermal Shift Assays. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
5	7H-Pyrrolo[2,3-d]pyrimidin-4-amine-Based Inhibitors of Calcium-Dependent Protein Kinase 1 Have Distinct Inhibitory and Oral Pharmacokinetic Characteristics Compared with 1H-Pyrazolo[3,4-d]pyrimidin-4-amine-Based Inhibitors. ACS Infectious Diseases, 2018, 4, 516-522.	3.8	5
6	Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Neglected Tropical Diseases, 2018, 12, e0006673.	3.0	37
7	Extended-spectrum antiprotozoal bumped kinase inhibitors: A review. Experimental Parasitology, 2017, 180, 71-83.	1.2	71
8	Development of an Orally Available and Central Nervous System (CNS) Penetrant <i>Toxoplasma gondii</i> Calcium-Dependent Protein Kinase 1 (<i>Tg</i> CDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of <i>Toxoplasmosis</i> Journal of Medicinal Chemistry, 2016, 59, 6531-6546.	6.4	81
9	Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS Neglected Tropical Diseases, 2016, 10, e0005107.	3.0	18
10	SAR Studies of 5-Aminopyrazole-4-carboxamide Analogues as Potent and Selective Inhibitors of <i>Toxoplasma gondii</i> CDPK1. ACS Medicinal Chemistry Letters, 2015, 6, 1184-1189.	2.8	32
11	The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites. Parasitology, 2014, 141, 1499-1509.	1.5	47
12	Potent and Selective Inhibitors of CDPK1 from <i>T. gondii</i> and <i>C. parvum</i> Based on a 5-Aminopyrazole-4-carboxamide Scaffold. ACS Medicinal Chemistry Letters, 2014, 5, 40-44.	2.8	49
13	Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) inhibitors that block the transmission of malaria to mosquitoes. European Journal of Medicinal Chemistry, 2014, 74, 562-573.	5.5	54
14	Neospora caninum Calcium-Dependent Protein Kinase 1 Is an Effective Drug Target for Neosporosis Therapy. PLoS ONE, 2014, 9, e92929.	2.5	63
15	Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen <i>Giardia lamblia</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1194-1200.	2.5	9
16	Multiple Determinants for Selective Inhibition of Apicomplexan Calcium-Dependent Protein Kinase CDPK1. Journal of Medicinal Chemistry, 2012, 55, 2803-2810.	6.4	60
17	Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5264-5267.	2.2	43
18	Development of <i>Toxoplasma gondii</i> Calcium-Dependent Protein Kinase 1 (<i>Tg</i> CDPK1) Inhibitors with Potent Anti- <i>Toxoplasma</i> Activity. Journal of Medicinal Chemistry, 2012, 55, 2416-2426.	6.4	101

#	Article	IF	Citations
19	To B or not to B: a question of resolution?. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 468-477.	2.5	62
20	Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors. Journal of Clinical Investigation, 2012, 122, 2301-2305.	8.2	90
21	Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochimie, 2011, 93, 570-582.	2.6	50
22	The Double-Length Tyrosyl-tRNA Synthetase from the Eukaryote Leishmania major Forms an Intrinsically Asymmetric Pseudo-Dimer. Journal of Molecular Biology, 2011, 409, 159-176.	4.2	40
23	Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure–activity relationships with Trypanosoma brucei GSK-3. Molecular and Biochemical Parasitology, 2011, 176, 98-108.	1.1	35
24	Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Molecular and Biochemical Parasitology, 2011, 177, 20-28.	1.1	16
25	Some <i>B</i> _{eq} are more equivalent than others. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, 512-516.	0.3	11
26	Atomic resolution studies of carbonic anhydrase II. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 616-627.	2.5	51
27	Validation of crystallographic models containing TLS or other descriptions of anisotropy. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 889-900.	2.5	52
28	Discovery of Potent and Selective Inhibitors of CDPK1 from <i>C. parvum</i> and <i>T. gondii</i> ACS Medicinal Chemistry Letters, 2010, 1, 331-335.	2.8	126
29	The Crystal Structure and Activity of a Putative Trypanosomal Nucleoside Phosphorylase Reveal It to be a Homodimeric Uridine Phosphorylase. Journal of Molecular Biology, 2010, 396, 1244-1259.	4.2	16
30	Crystal Structures of Trypanosomal Histidyl-tRNA Synthetase Illuminate Differences between Eukaryotic and Prokaryotic Homologs. Journal of Molecular Biology, 2010, 397, 481-494.	4.2	37
31	Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nature Structural and Molecular Biology, 2010, 17, 602-607.	8.2	172
32	Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica. Molecular and Biochemical Parasitology, 2010, 169, 95-100.	1.1	14
33	Toxoplasma gondii Cathepsin L Is the Primary Target of the Invasion-inhibitory Compound Morpholinurea-leucyl-homophenyl-vinyl Sulfone Phenyl. Journal of Biological Chemistry, 2009, 284, 26839-26850.	3.4	60
34	Structure of a <i>Trypanosoma brucei</i> \hat{l} ± \hat{l} ²-hydrolase fold protein with unknown function. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 474-478.	0.7	5
35	HingeMaster: Normal mode hinge prediction approach and integration of complementary predictors. Proteins: Structure, Function and Bioinformatics, 2008, 73, 299-319.	2.6	38
36	Structures of Substrate- and Inhibitor-Bound Adenosine Deaminase from a Human Malaria Parasite Show a Dramatic Conformational Change and Shed Light on Drug Selectivity. Journal of Molecular Biology, 2008, 381, 975-988.	4.2	33

#	Article	IF	CITATIONS
37	Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 439-450.	2.5	1,175
38	TLSMDweb server for the generation of multi-group TLS models. Journal of Applied Crystallography, 2006, 39, 109-111.	4.5	685
39	Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. International Journal of Medical Microbiology, 2004, 294, 217-223.	3.6	36
40	Characterization and Crystal Structure of a High-Affinity Pentavalent Receptor-Binding Inhibitor for Cholera Toxin and E.coliHeat-Labile Enterotoxin. Journal of the American Chemical Society, 2002, 124, 8818-8824.	13.7	137
41	Solution and Crystallographic Studies of Branched Multivalent Ligands that Inhibit the Receptor-Binding of Cholera Toxin. Journal of the American Chemical Society, 2002, 124, 12991-12998.	13.7	124
42	Anchor-Based Design of Improved Cholera Toxin and E. coli Heat-Labile Enterotoxin Receptor Binding Antagonists that Display Multiple Binding Modes. Chemistry and Biology, 2002, 9, 215-224.	6.0	41
43	Exploration of the GM1 receptor-binding site of heat-labile enterotoxin and cholera toxin by phenyl-ring-containing galactose derivatives. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 201-212.	2.5	38
44	Structure ofm-carboxyphenyl-α-D-galactopyranoside complexed to heat-labile enterotoxin at 1.3â€Ã resolution: surprising variations in ligand-binding modes. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 795-804.	2.5	10
45	AB5 toxins: structures and inhibitor design. Current Opinion in Structural Biology, 2000, 10, 680-686.	5.7	123
46	Expanding the model: anisotropic displacement parameters in protein structure refinement. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1109-1117.	2.5	120
47	Structure-based Discovery of a Pore-binding Ligand: Towards Assembly Inhibitors for Cholera and Related AB5Toxins. Journal of Molecular Biology, 1999, 285, 1169-1178.	4.2	11
48	The 1.25 \tilde{A} resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. Journal of Molecular Biology, 1998, 282, 1043-1059.	4.2	170
49	[26] Raster3D: Photorealistic molecular graphics. Methods in Enzymology, 1997, 277, 505-524.	1.0	3,518
50	Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin. Structure, 1997, 5, 1485-1499.	3.3	58
51	Structural studies of receptor binding by cholera toxin mutants. Protein Science, 1997, 6, 1516-1528.	7.6	98
52	E. Coli Heat Labile Enterotoxin and Cholera Toxin B-Pentamerâ€"Crystallographic Studies of Biological Activity. Molecular Biology Intelligence Unit, 1996, , 147-172.	0.2	2
53	Surprising leads for a cholera toxin receptor-binding antagonist: crystallographic studies of CTB mutants. Structure, 1995, 3, 561-570.	3.3	29
54	The Arg7Lys Mutant of Heat-Labile Enterotoxin Exhibits Great Flexibility of Active Site Loop 47-56 of the A Subunit. Biochemistry, 1995, 34, 10996-11004.	2.5	35

ETHAN A MERRITT

#	Article	IF	CITATIONS
55	AB5 toxins. Current Opinion in Structural Biology, 1995, 5, 165-171.	5.7	277
56	Structural diversity in a conserved cholera toxin epitope involved in ganglioside binding. Protein Science, 1995, 4, 841-848.	7.6	8
57	Crystal structure of cholera toxin Bâ€pentamer bound to receptor G _{M1} pentasaccharide. Protein Science, 1994, 3, 166-175.	7.6	534
58	Protein crystallography and infectious diseases. Protein Science, 1994, 3, 1670-1686.	7.6	48
59	Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT). Molecular Microbiology, 1994, 13, 745-753.	2.5	131