Jesus Valcarcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1118365/publications.pdf

Version: 2024-02-01

535685 591227 39 846 17 27 citations h-index g-index papers 39 39 39 1027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of codfish gelatin: A comparative study of fresh and salted skins and different extraction methods. Food Hydrocolloids, 2022, 124, 107238.	5.6	12
2	Combined gelatin-chondroitin sulfate hydrogels with graphene nanoparticles. Emergent Materials, 2022, 5, 755-764.	3.2	3
3	Isolation and Characterization of Polysaccharides from the Ascidian Styela clava. Polymers, 2022, 14, 16.	2.0	3
4	Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels, 2022, 8, 237.	2.1	14
5	Biorefinery for tuna head wastes: Production of protein hydrolysates, high-quality oils, minerals and bacterial peptones. Journal of Cleaner Production, 2022, 357, 131909.	4.6	15
6	Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics, 2022, 14, 1138.	2.0	7
7	Deciphering Structural Determinants in Chondroitin Sulfate Binding to FGF-2: Paving the Way to Enhanced Predictability of Their Biological Functions. Polymers, 2021, 13, 313.	2.0	13
8	Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Marine Drugs, 2021, 19, 338.	2.2	31
9	The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 2021, 19, 384.	2.2	11
10	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	1.7	11
11	Characterization of Gelatin and Hydrolysates from Valorization of Farmed Salmon Skin By-Products. Polymers, 2021, 13, 2828.	2.0	17
12	Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Marine Drugs, 2021, 19, 491.	2.2	18
13	Valorisation of Atlantic codfish (Gadus morhua) frames from the cure-salting industry as fish protein hydrolysates with in vitro bioactive properties. LWT - Food Science and Technology, 2021, 149, 111840.	2.5	15
14	Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. International Journal of Molecular Sciences, 2021, 22, 12104.	1.8	9
15	Marine chondroitin sulfate of defined molecular weight by enzymatic depolymerization. Carbohydrate Polymers, 2020, 229, 115450.	5.1	11
16	Valorisation of fish discards assisted by enzymatic hydrolysis and microbial bioconversion: Lab and pilot plant studies and preliminary sustainability evaluation. Journal of Cleaner Production, 2020, 246, 119027.	4.6	33
17	Hyaluronic acid of tailored molecular weight by enzymatic and acid depolymerization. International Journal of Biological Macromolecules, 2020, 145, 788-794.	3.6	14
18	Coumarin-grafted blue-emitting fluorescent alginate as a potentially valuable tool for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 813-825.	2.9	15

#	Article	IF	Citations
19	Bioconversion of Fish Discards through the Production of Lactic Acid Bacteria and Metabolites: Sustainable Application of Fish Peptones in Nutritive Fermentation Media. Foods, 2020, 9, 1239.	1.9	5
20	Optimal Production of Protein Hydrolysates from Monkfish By-Products: Chemical Features and Associated Biological Activities. Molecules, 2020, 25, 4068.	1.7	17
21	Optimal Recovery of Valuable Biomaterials, Chondroitin Sulfate and Bioapatites, from Central Skeleton Wastes of Blue Shark. Polymers, 2020, 12, 2613.	2.0	2
22	Does Subunit Composition Influence the Intermolecular Crosslinking of Fish Collagen? A Study with Hake and Blue Shark Skin Collagens. Polymers, 2020, 12, 1734.	2.0	12
23	Optimization of the Enzymatic Protein Hydrolysis of By-Products from Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax), Chemical and Functional Characterization. Foods, 2020, 9, 1503.	1.9	20
24	Chondroitin sulfate and hydroxyapatite from Prionace glauca shark jaw: Physicochemical and structural characterization. International Journal of Biological Macromolecules, 2020, 156, 329-339.	3.6	15
25	Production, Characterization, and Bioactivity of Fish Protein Hydrolysates from Aquaculture Turbot (Scophthalmus maximus) Wastes. Biomolecules, 2020, 10, 310.	1.8	43
26	Impact of Prevalence Ratios of Chondroitin Sulfate (CS)- 4 and -6 Isomers Derived from Marine Sources in Cell Proliferation and Chondrogenic Differentiation Processes. Marine Drugs, 2020, 18, 94.	2.2	14
27	Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera) Tj ETQq1 1 0.784314	rgBT_/Over	ock 10 Tf 50
28	Quantitative evaluation of sulfation position prevalence in chondroitin sulphate by Raman spectroscopy. Journal of Raman Spectroscopy, 2019, 50, 656-664.	1.2	14
29	Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Marine Drugs, 2019, 17, 676.	2.2	33
30	Isolation and Chemical Characterization of Chondroitin Sulfate from Cartilage By-Products of Blackmouth Catshark (Galeus melastomus). Marine Drugs, 2018, 16, 344.	2.2	40
31	An integral and sustainable valorisation strategy of squid pen by-products. Journal of Cleaner Production, 2018, 201, 207-218.	4.6	22
32	Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances, 2017, 35, 711-725.	6.0	128
33	Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 2017, 174, 262-272.	5.1	32
34	Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology. Marine Drugs, 2017, 15, 180.	2.2	45
35	Levels of potential bioactive compounds including carotenoids, vitamin C and phenolic compounds, and expression of their cognate biosynthetic genes vary significantly in different varieties of potato (<i>Solanum tuberosum</i> L.) grown under uniform cultural conditions. Journal of the Science of Food and Agriculture, 2016, 96, 1018-1026.	1.7	15
36	Total Carotenoids and l-Ascorbic Acid Content in 60 Varieties of Potato (Solanum tuberosum L.) Grown in Ireland. Potato Research, 2015, 58, 29-41.	1.2	29

#	Article	IF	CITATIONS
37	Antioxidant Activity, Total Phenolic and Total Flavonoid Content in Sixty Varieties of Potato (Solanum tuberosum L.) Grown in Ireland. Potato Research, 2015, 58, 221-244.	1.2	33
38	Effect of Genotype and Environment on the Glycoalkaloid Content of Rare, Heritage, and Commercial Potato Varieties. Journal of Food Science, 2014, 79, T1039-48.	1.5	36
39	Biocompatibility enhancement of PLA by the generation of bionanocomposites with fish collagen derivatives. Emergent Materials, 0, , $1.$	3.2	2