Satyendra P Bhavsar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11179798/publications.pdf Version: 2024-02-01

8.2

17

#	Article	IF	CITATIONS
1	Spatiotemporal trends of polychlorinated biphenyls (PCBs) in surface and suspended sediments from the Lake Ontario Canadian nearshore 1994–2018: A fish consumption advisory perspective. Journal of Great Lakes Research, 2022, 48, 300-314.	1.9	6
2	Organophosphate esters in Great Lakes fish: An improved analysis to assess concentrations and human exposure via consumption. Science of the Total Environment, 2022, 807, 150981.	8.0	7
3	Is it safe to eat fish from the Great Lakes? An adaptive modelling-monitoring framework to assess compliance with consumption advisories. Journal of Great Lakes Research, 2021, 47, 1097-1116.	1.9	1
4	A probabilistic assessment of the impairment status of Areas of Concern in the Laurentian Great Lakes: How far are we from delisting the Hamilton Harbour, Lake Ontario, Canada?. Ecological Informatics, 2021, 62, 101271.	5.2	4
5	Assessment of fish consumption beneficial use impairment at the Great Lakes Thunder Bay and St. Marys River Areas of Concern, Canada. Journal of Great Lakes Research, 2020, 46, 560-568.	1.9	1
6	Interspecific differences in omega-3 PUFA and contaminants explain the most variance in suggested Great Lakes' fish consumption when risks/benefits are considered together. Journal of Great Lakes Research, 2020, 46, 549-559.	1.9	12
7	Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size. Environmental Research, 2020, 188, 109750.	7.5	16
8	Drivers of declines in common loon (Gavia immer) productivity in Ontario, Canada. Science of the Total Environment, 2020, 738, 139724.	8.0	6
9	Use of a Food Web Bioaccumulation Model to Uncover Spatially Integrated Polychlorinated Biphenyl Exposures in Detroit River Sport Fish. Environmental Toxicology and Chemistry, 2019, 38, 2771-2784.	4.3	4
10	Dioxins in Great Lakes fish: Past, present and implications for future monitoring. Chemosphere, 2019, 222, 479-488.	8.2	14
11	A comparison of fish tissue mercury concentrations from homogenized fillet and nonlethal biopsy plugs. Journal of Environmental Sciences, 2019, 80, 137-145.	6.1	11
12	What's hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes. Environmental Research, 2018, 162, 63-73.	7.5	33
13	Levels, patterns, trends and significance of polychlorinated naphthalenes (PCNs) in Great Lakes fish. Science of the Total Environment, 2018, 624, 499-508.	8.0	19
14	Spatial and length-dependent variation of the risks and benefits of consuming Walleye (Sander) Tj ETQq0 0 0 rgB	T /Overloo 10.0	ck 10 Tf 50 2
15	Spatiotemporal Variations in Mercury Bioaccumulation at Fine and Broad Scales for Two Freshwater Sport Fishes. Water (Switzerland), 2018, 10, 1625.	2.7	6
16	Assessing fish consumption Beneficial Use Impairment at Great Lakes Areas of Concern: Toronto case study. Aquatic Ecosystem Health and Management, 2018, 21, 318-330.	0.6	9

17	Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective. Environmental Pollution, 2018, 243, 777-789.	7.5	15

A Bayesian assessment of polychlorinated biphenyl contamination of fish communities in the Laurentian Great Lakes. Chemosphere, 2018, 210, 1193-1206.

SATYENDRA P BHAVSAR

#	Article	IF	CITATIONS
19	Polybrominated diphenyl ethers (PBDEs) in Great Lakes fish: Levels, patterns, trends and implications for human exposure. Science of the Total Environment, 2017, 576, 907-916.	8.0	40
20	Estimation of omega-3 fatty acid (EPA + DHA) intake from Lake Ontario fish based on provincial consumption advisories. Journal of Great Lakes Research, 2017, 43, 1132-1140.	1.9	13
21	Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures?. Environmental Health Perspectives, 2017, 125, 586-593.	6.0	38
22	Persistent Organohalogens in Paired Fish Fillet and Eggs: Implications for Fish Consumption Advisories. Journal of Agricultural and Food Chemistry, 2016, 64, 2832-2840.	5.2	13
23	High levels, partitioning and fish consumption based water guidelines of perfluoroalkyl acids downstream of a former firefighting training facility in Canada. Environment International, 2016, 94, 415-423.	10.0	26
24	Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. Chemosphere, 2016, 164, 535-546.	8.2	45
25	Improvements in fish polychlorinated biphenyl and other contaminant levels in response to remedial actions in Hamilton Harbour, Ontario, Canada. Aquatic Ecosystem Health and Management, 2016, 19, 161-170.	0.6	11
26	ls it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?. Environment International, 2016, 88, 80-85.	10.0	5
27	Guiding fish consumption advisories for Lake Ontario: A Bayesian hierarchical approach. Journal of Great Lakes Research, 2016, 42, 70-82.	1.9	11
28	Is mirex still a contaminant of concern for the North American Great Lakes?. Journal of Great Lakes Research, 2015, 41, 1114-1122.	1.9	12
29	Evaluation and Interconversion of Various Indicator PCB Schemes for â [~] PCB and Dioxin-Like PCB Toxic Equivalent Levels in Fish. Environmental Science & Technology, 2015, 49, 123-131.	10.0	26
30	A Bayesian assessment of the mercury and PCB temporal trends in lake trout (Salvelinus namaycush) and walleye (Sander vitreus) from lake Ontario, Ontario, Canada. Ecotoxicology and Environmental Safety, 2015, 117, 174-186.	6.0	21
31	Assessment of contaminant levels in fish from the Toronto waterfront area. Journal of Great Lakes Research, 2015, 41, 228-237.	1.9	7
32	Projecting Fish Mercury Levels in the Province of Ontario, Canada and the Implications for Fish and Human Health. Environmental Science & Technology, 2015, 49, 14494-14502.	10.0	20
33	Significance of toxaphene in Great Lakes fish consumption advisories. Journal of Great Lakes Research, 2014, 40, 71-79.	1.9	15
34	High levels of perfluoroalkyl acids in sport fish species downstream of a firefighting training facility at Hamilton International Airport, Ontario, Canada. Environment International, 2014, 67, 1-11.	10.0	64
35	Risk-benefit of consuming Lake Erie fish. Environmental Research, 2014, 134, 57-65.	7.5	51
36	Fish Mercury Levels Appear to Be Increasing Lately: A Report from 40 Years of Monitoring in the Province of Ontario, Canada. Environmental Science & Technology, 2014, 48, 5404-5414.	10.0	64

SATYENDRA P BHAVSAR

#	Article	IF	CITATIONS
37	Cooking fish is not effective in reducing exposure to perfluoroalkyl and polyfluoroalkyl substances. Environment International, 2014, 66, 107-114.	10.0	40
38	Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region. Food Chemistry, 2014, 164, 544-550.	8.2	65
39	An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 436-451.	1.4	93
40	Fish contamination in Lake Erie: An examination of temporal trends of organochlorine contaminants and a Bayesian approach to consumption advisories. Ecological Informatics, 2013, 18, 131-148.	5.2	12
41	Effects of skin removal on contaminant levels in salmon and trout filets. Science of the Total Environment, 2013, 443, 218-225.	8.0	14
42	Fatty acids in Great Lakes lake trout and whitefish. Journal of Great Lakes Research, 2013, 39, 120-127.	1.9	12
43	Temporal changes in mercury concentrations of large-bodied fishes in the boreal shield ecoregion of northern Ontario, Canada. Science of the Total Environment, 2013, 444, 409-416.	8.0	12
44	Examination of temporal DDT trends in Lake Erie fish communities using dynamic linear modeling. Journal of Great Lakes Research, 2013, 39, 437-448.	1.9	11
45	Assessment of fish mercury levels in the upper St. Lawrence River, Canada. Journal of Great Lakes Research, 2013, 39, 336-343.	1.9	14
46	Risks and Benefits of Consumption of Great Lakes Fish. Environmental Health Perspectives, 2012, 120, 11-18.	6.0	106
47	Assessing the fish consumption beneficial use impairment in the Bay of Quinte. Aquatic Ecosystem Health and Management, 2012, 15, 453-463.	0.6	3
48	Long-term changes in fish mercury levels in the historically impacted English-Wabigoon River system (Canada). Journal of Environmental Monitoring, 2012, 14, 2327.	2.1	20
49	Organohalogen contaminants of emerging concern in Great Lakes fish: a review. Analytical and Bioanalytical Chemistry, 2012, 404, 2639-2658.	3.7	35
50	Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region. Analytical and Bioanalytical Chemistry, 2012, 404, 2699-2709.	3.7	56
51	Toxicological significance of mercury in yellow perch in the Laurentian Great Lakes region. Environmental Pollution, 2012, 161, 350-357.	7.5	42
52	Long-Term Environmental Fate of Perfluorinated Compounds after Accidental Release at Toronto Airport. Environmental Science & Technology, 2011, 45, 8081-8089.	10.0	122
53	Detection of the Spatiotemporal Trends of Mercury in Lake Erie Fish Communities: A Bayesian Approach. Environmental Science & amp; Technology, 2011, 45, 2217-2226.	10.0	32
54	Contaminant biomonitoring programs in the Great Lakes region: Review of approaches and critical factors. Environmental Reviews, 2011, 19, 162-184.	4.5	72

SATYENDRA P BHAVSAR

#	Article	IF	CITATIONS
55	Detection of temporal trends of α- and γ-chlordane in Lake Erie fish communities using dynamic linear modeling. Ecotoxicology and Environmental Safety, 2011, 74, 1107-1121.	6.0	11
56	Temporal PCB and mercury trends in Lake Erie fish communities: A dynamic linear modeling analysis. Ecotoxicology and Environmental Safety, 2011, 74, 2203-2214.	6.0	42
57	Influence of fish size and sex on mercury/PCB concentration: Importance for fish consumption advisories. Environment International, 2011, 37, 425-434.	10.0	136
58	Trends of legacy and emerging-issue contaminants in Lake Simcoe fishes. Journal of Great Lakes Research, 2011, 37, 148-159.	1.9	16
59	A Bayesian assessment of the PCB temporal trends in Lake Erie fish communities. Journal of Great Lakes Research, 2011, 37, 507-520.	1.9	24
60	Ecological risk of methylmercury to piscivorous fish of the Great Lakes region. Ecotoxicology, 2011, 20, 1577-1587.	2.4	62
61	Spatiotemporal trends of mercury in walleye and largemouth bass from the Laurentian Great Lakes Region. Ecotoxicology, 2011, 20, 1555-1567.	2.4	70
62	Great Lakes fish consumption advisories: is mercury a concern?. Ecotoxicology, 2011, 20, 1588-1598.	2.4	47
63	Thirty-Year Time Series of PCB Concentrations in a Small Invertivorous Fish (Notropis Hudsonius): An Examination of Post-1990 Trajectory Shifts in the Lower Great Lakes. Ecosystems, 2011, 14, 415-429.	3.4	21
64	Critical load analysis in hazard assessment of metals using a Unit World Model. Environmental Toxicology and Chemistry, 2011, 30, 2157-2166.	4.3	3
65	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
66	Estimating sediment quality thresholds to prevent restrictions on fish consumption: Application to polychlorinated biphenyls and dioxins–furans in the Canadian Great Lakes. Integrated Environmental Assessment and Management, 2010, 6, 641-652.	2.9	16
67	Changes in Mercury Levels in Great Lakes Fish Between 1970s and 2007. Environmental Science & Technology, 2010, 44, 3273-3279.	10.0	114
68	Temporal and spatial trends of organochlorines and mercury in fishes from the St. Clair River/Lake St. Clair corridor, Canada. Journal of Great Lakes Research, 2010, 36, 100-112.	1.9	44
69	Identification and Screening Analysis of Halogenated Norbornene Flame Retardants in the Laurentian Great Lakes: Dechloranes 602, 603, and 604. Environmental Science & Technology, 2010, 44, 760-766.	10.0	128
70	UNCERTAINTY ANALYSIS OF DIOXIN-LIKE POLYCHLORINATED BIPHENYLS-RELATED TOXIC EQUIVALENTS IN FISH. Environmental Toxicology and Chemistry, 2008, 27, 997.	4.3	9
71	Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another. Environment International, 2008, 34, 915-921.	10.0	82
72	Temporal trends and spatial distribution of dioxins and furans in lake trout or lake whitefish from the Canadian Great Lakes. Chemosphere, 2008, 73, S158-S165.	8.2	51

#	Article	IF	CITATIONS
73	Fate of PBDEs in Juvenile Lake Trout Estimated Using a Dynamic Multichemical Fish Model. Environmental Science & Technology, 2008, 42, 3724-3731.	10.0	30
74	Composition of Dioxin-like PCBs in Fish:Â An Application for Risk Assessment. Environmental Science & Technology, 2007, 41, 3096-3102.	10.0	52
75	Are PCB Levels in Fish from the Canadian Great Lakes Still Declining?. Journal of Great Lakes Research, 2007, 33, 592.	1.9	87
76	Estimating dioxinâ€like polychlorinated biphenyl toxic equivalents from total polychlorinated biphenyl measurements in fish. Environmental Toxicology and Chemistry, 2007, 26, 1622-1628.	4.3	42