Satyendra P Bhavsar

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11179798/publications.pdf
Version: 2024-02-01

Spatiotemporal trends of polychlorinated biphenyls (PCBs) in surface and suspended sediments from
1 the Lake Ontario Canadian nearshore 1994ấ " 2018 : A fish consumption advisory perspective. Journal of 2
1.9 Great Lakes Research, 2022, 48, 300-314.

2 Organophosphate esters in Great Lakes fish: An improved analysis to assess concentrations and human exposure via consumption. Science of the Total Environment, 2022, 807, 150981.

Is it safe to eat fish from the Great Lakes? An adaptive modelling-monitoring framework to assess compliance with consumption advisories. Journal of Great Lakes Research, 2021, 47, 1097-1116.

A probabilistic assessment of the impairment status of Areas of Concern in the Laurentian Great Lakes:
4 How far are we from delisting the Hamilton Harbour, Lake Ontario, Canada?. Ecological Informatics, 2021, 62, 101271.

5 Assessment of fish consumption beneficial use impairment at the Great Lakes Thunder Bay and St.
Marys River Areas of Concern, Canada. Journal of Great Lakes Research, 2020, 46, 560-568.
Interspecific differences in omega-3 PUFA and contaminants explain the most variance in suggested
$6 \quad$ Great Lakesâ $€^{\text {TM }}$ fish consumption when risks/benefits are considered together. Journal of Great Lakes
$1.9 \quad 12$ Research, 2020, 46, 549-559.
$7 \quad$ Climate and landscape conditions indirectly affect fish mercury levels by altering lake water
$7 \quad \begin{aligned} & \text { Climate and landscape conditions indirectly affect fish mercury levels } \\ & \text { chemistry and fish size. Environmental Research, 2020, 188, } 109750 .\end{aligned}$

8 Drivers of declines in common loon (Gavia immer) productivity in Ontario, Canada. Science of the 8 Total Environment, 2020, 738, 139724.

9 Use of a Food Web Bioaccumulation Model to Uncover Spatially Integrated Polychlorinated Biphenyl
Exposures in Detroit River Sport Fish. Environmental Toxicology and Chemistry, 2019, 38, 2771-2784.

Dioxins in Great Lakes fish: Past, present and implications for future monitoring. Chemosphere, 2019,
8.2

14

A comparison of fish tissue mercury concentrations from homogenized fillet and nonlethal biopsy
$11 \begin{aligned} & \text { A comparison of fish tissue mercury concentrations from hom } \\ & \text { plugs. Journal of Environmental Sciences, 2019, 80, 137-145. }\end{aligned}$

Whatâ $€^{\mathrm{TM}}$ s hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes. Environmental Research, 2018, 162, 63-73.

Levels, patterns, trends and significance of polychlorinated naphthalenes (PCNs) in Great Lakes fish. Science of the Total Environment, 2018, 624, 499-508.

Spatial and length-dependent variation of the risks and benefits of consuming Walleye (Sander) Tj ETQq0 00 rgBT L8verlock 10 Tf 5022

Spatiotemporal Variations in Mercury Bioaccumulation at Fine and Broad Scales for Two Freshwater

Assessing fish consumption Beneficial Use Impairment at Great Lakes Areas of Concern: Toronto case study. Aquatic Ecosystem Health and Management, 2018, 21, 318-330.

21	Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures?. Environmental Health Perspectives, 2017, 125, 586-593.	6.0	38
22	Persistent Organohalogens in Paired Fish Fillet and Eggs: Implications for Fish Consumption Advisories. Journal of Agricultural and Food Chemistry, 2016, 64, 2832-2840.	5.2	13
23	High levels, partitioning and fish consumption based water guidelines of perfluoroalkyl acids downstream of a former firefighting training facility in Canada. Environment International, 2016, 94, 415-423.	10.0	26
24	Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. Chemosphere, 2016, 164, 535-546.	8.2	45
25	Improvements in fish polychlorinated biphenyl and other contaminant levels in response to remedial actions in Hamilton Harbour, Ontario, Canada. Aquatic Ecosystem Health and Management, 2016, 19, 161-170.	0.6	11

26 Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?. Environment International, 2016, 88, 80-85.
10.05
$27 \quad$ Guiding fish consumption advisories for Lake Ontario: A Bayesian hierarchical approach. Journal of

Is mirex still a contaminant of concern for the North American Great Lakes?. Journal of Great Lakes Research, 2015, 41, 1114-1122.
1.9

12
Evaluation and Interconversion of Various Indicator PCB Schemes for â^PCB and Dioxin-Like PCB Toxic

Equivalent Levels in Fish. Environmental Science \& Technology, 2015, 49, 123-131. \begin{tabular}{l}
A Bayesian assessment of the mercury and PCB temporal trends in lake trout (Salvelinus namaycush)

and walleye (Sander vitreus) from lake Ontario, Ontario, Canada. Ecotoxicology and Environmental

Safety, 2015, 117, 174-186.

Assessment of contaminant levels in fish from the Toronto waterfront area. Journal of Great Lakes

30

Aesearch, 2015,41, 228-237.

\end{tabular}

32 Projecting Fish Mercury Levels in the Province of Ontario, Canada and the Implications for Fish and Human Health. Environmental Science \& Technology, 2015, 49, 14494-14502.
10.0

20

Significance of toxaphene in Great Lakes fish consumption advisories. Journal of Great Lakes Research,
33 2014, 40, 71-79.
1.9

15

High levels of perfluoroalkyl acids in sport fish species downstream of a firefighting training facility at Hamilton International Airport, Ontario, Canada. Environment International, 2014, 67, 1-11.
Temporal changes in mercury concentrations of large-bodied fishes in the boreal shield ecoregion of
northern Ontario, Canada. Science of the Total Environment, 2013, 444, 409-416.
44 Examination of temporal DDT trends in Lake Erie fish communities using dynamic linear modeling.
Journal of Great Lakes Research, 2013, 39, 437-448.

Risks and Benefits of Consumption of Great Lakes Fish. Environmental Health Perspectives, 2012, 120,
Assessing the fish consumption beneficial use impairment in the Bay of Quinte. Aquatic EcosystemAssessing the fish consumption beneficial use
Health and Management, 2012, 15, 453-463.Assessment of fish mercury levels in the upper St. Lawrence River, Canada. Journal of Great LakesResearch, 2013, 39, 336-343.
65 The clearwater consensus: the estimation of metal hazard in fresh water. International Journal ofLife Cycle Assessment, 2010, 15, 143-147.Estimating sediment quality thresholds to prevent restrictions on fish consumption: Application to66 polychlorinated biphenyls and dioxinsâ€"furans in the Canadian Great Lakes. Integrated Environmental2.9

Composition of Dioxin-like PCBs in Fish:Â An Application for Risk Assessment. Environmental Science

