Shin-Ichi Kashiwabara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11175969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional characterization of testis-brain RNA-binding protein, TB-RBP/Translin, in translational regulation. Journal of Reproduction and Development, 2021, 67, 35-42.	1.4	2
2	USP15 Deubiquitinates TUT1 Associated with RNA Metabolism and Maintains Cerebellar Homeostasis. Molecular and Cellular Biology, 2020, 40, .	2.3	10
3	PAPOLB/TPAP regulates spermiogenesis independently of chromatoid body-associated factors. Journal of Reproduction and Development, 2018, 64, 25-31.	1.4	7
4	Adenylation by testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, is essential for spermatogenesis. Journal of Reproduction and Development, 2016, 62, 607-614.	1.4	13
5	Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3696-E3705.	7.1	44
6	Functional compensation for the loss of testis-specific poly(A)-binding protein, PABPC2, during mouse spermatogenesis. Journal of Reproduction and Development, 2016, 62, 305-310.	1.4	11
7	Two Functional Forms of ACRBP/sp32 Are Produced by Pre-mRNA Alternative Splicing in the Mouse1. Biology of Reproduction, 2013, 88, 105.	2.7	25
8	Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes and Development, 2009, 23, 433-438.	5.9	378
9	Characterization of Two Cytoplasmic Poly(A)-Binding Proteins, PABPC1 and PABPC2, in Mouse Spermatogenic Cells1. Biology of Reproduction, 2009, 80, 545-554.	2.7	50
10	Functional Roles of Mouse Sperm Hyaluronidases, HYAL5 and SPAM1, in Fertilization1. Biology of Reproduction, 2009, 81, 939-947.	2.7	82
11	Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment. Genes To Cells, 2008, 13, 1001-1013.	1.2	64
12	Non-canonical poly(A) polymerase in mammalian gametogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 230-238.	1.9	14
13	Birth of Normal Offspring from Mouse Eggs Activated by a Phospholipase C.ZETA. Protein Lacking Three EF-hand Domains. Journal of Reproduction and Development, 2008, 54, 244-249.	1.4	18
14	Sperm penetration through cumulus mass and zona pellucida. International Journal of Developmental Biology, 2008, 52, 677-682.	0.6	63
15	Disruption of mouse poly(A) polymerase mGLD-2 does not alter polyadenylation status in oocytes and somatic cells. Biochemical and Biophysical Research Communications, 2007, 364, 14-19.	2.1	37
16	A component of BRAF-HDAC complex, BHC80, is required for neonatal survival in mice. FEBS Letters, 2006, 580, 3129-3135.	2.8	16
17	Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Developmental Biology, 2006, 289, 115-126.	2.0	55
18	Mouse Sperm Lacking ADAM1b/ADAM2 Fertilin Can Fuse with the Egg Plasma Membrane and Effect Fertilization. Journal of Biological Chemistry, 2006, 281, 5634-5639.	3.4	71

#	Article	IF	CITATIONS
19	Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18028-18033.	7.1	112
20	Transgenic Expression of Testis-Specific Poly(A) Polymerase TRAP in Wild-Type and TPAP-Deficient Mice. Journal of Reproduction and Development, 2004, 50, 207-213.	1.4	17
21	Synthesis, Processing, and Subcellular Localization of Mouse ADAM3 during Spermatogenesis and Epididymal Sperm Transport. Journal of Reproduction and Development, 2004, 50, 571-578.	1.4	44
22	Expression of a Testis-Specific Form of TBP-Related Factor 2 (TRF2) mRNA During Mouse Spermatogenesis Journal of Reproduction and Development, 2003, 49, 107-111.	1.4	15
23	Mouse Sperm Lacking Cell Surface Hyaluronidase PH-20 Can Pass through the Layer of Cumulus Cells and Fertilize the Egg. Journal of Biological Chemistry, 2002, 277, 30310-30314.	3.4	160
24	Mammalian Copper Chaperone Cox17p Has an Essential Role in Activation of Cytochrome c Oxidase and Embryonic Development. Molecular and Cellular Biology, 2002, 22, 7614-7621.	2.3	114
25	Regulation of Spermatogenesis by Testis-Specific, Cytoplasmic Poly(A) Polymerase TPAP. Science, 2002, 298, 1999-2002.	12.6	119
26	The ADAM1a and ADAM1b genes, instead of the ADAM1 (fertilin \hat{I}_{\pm}) gene, are localized on mouse chromosome 5. Gene, 2002, 291, 67-76.	2.2	29
27	The hiiragi Gene Encodes a Poly(A) Polymerase, Which Controls the Formation of the Wing Margin in Drosophila melanogaster. Developmental Biology, 2001, 233, 137-147.	2.0	18
28	Identification of a Novel Isoform of Poly(A) Polymerase, TPAP, Specifically Present in the Cytoplasm of Spermatogenic Cells. Developmental Biology, 2000, 228, 106-115.	2.0	88
29	A Homologue of Pancreatic Trypsin Is Localized in the Acrosome of Mammalian Sperm and Is Released During Acrosome Reaction. Journal of Biological Chemistry, 1999, 274, 29426-29432.	3.4	52
30	Difference of acrosomal serine protease system between mouse and other rodent sperm. , 1999, 25, 115-122.		23
31	Difference of acrosomal serine protease system between mouse and other rodent sperm. Genesis, 1999, 25, 115-122.	2.1	1
32	Two Novel Testicular Serine Proteases, TESP1 and TESP2, Are Present in the Mouse Sperm Acrosome. Biochemical and Biophysical Research Communications, 1998, 245, 658-665.	2.1	68
33	Acrosin Accelerates the Dispersal of Sperm Acrosomal Proteins during Acrosome Reaction. Journal of Biological Chemistry, 1998, 273, 10470-10474.	3.4	150
34	p-Aminobenzamidine-sensitive acrosomal protease(s) other than acrosin serve the sperm penetration of the egg zona pellucida in mouse. Zygote, 1998, 6, 311-319.	1.1	42
35	Amino Acid Sequences of Porcine Sp38 and Proacrosin Required for Binding to the Zona Pellucida. Developmental Biology, 1995, 168, 575-583.	2.0	64
36	Structure and Organization of the Mouse Acrosin Gene1. Journal of Biochemistry, 1991, 109, 828-833.	1.7	28

#	Article	IF	CITATIONS
37	Primary Structure of Mouse Proacrosin Deduced from the cDNA Sequence and Its Gene Expression during Spermatogenesis. Journal of Biochemistry, 1990, 108, 785-791.	1.7	43
38	Acrosin biosynthesis in meiotic and postmelotic spermatogenic cells. Biochemical and Biophysical Research Communications, 1990, 173, 240-245.	2.1	80
39	Primary structure of human proacrosin deduced from its cDNA sequence. FEBS Letters, 1989, 244, 296-300.	2.8	68
40	Proacrosin activation in the presence of a 32-kDa protein from boar spermatozoa. Biochemical and Biophysical Research Communications, 1989, 160, 1026-1032.	2.1	38