Thomas E Wales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11171768/publications.pdf Version: 2024-02-01

THOMAS F WALES

#	Article	IF	CITATIONS
1	The Conformational State of the BTK Substrate PLCÎ ³ Contributes to Ibrutinib Resistance. Journal of Molecular Biology, 2022, 434, 167422.	4.2	4
2	Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase. Molecular Cell, 2022, 82, 570-584.e8.	9.7	39
3	Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nature Communications, 2022, 13, .	12.8	5
4	Simple and Fast Maximally Deuterated Control (maxD) Preparation for Hydrogen–Deuterium Exchange Mass Spectrometry Experiments. Analytical Chemistry, 2022, 94, 10142-10150.	6.5	14
5	Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Analytical Chemistry, 2021, 93, 567-582.	6.5	63
6	The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein core. Nature Communications, 2021, 12, 4932.	12.8	13
7	A Conservative Point Mutation in a Dynamic Antigen-binding Loop of Human Immunoglobulin λ6 Light Chain Promotes Pathologic Amyloid Formation. Journal of Molecular Biology, 2021, 433, 167310.	4.2	9
8	A redox switch regulates the structure and function of anti-apoptotic BFL-1. Nature Structural and Molecular Biology, 2020, 27, 781-789.	8.2	4
9	Cumulative deamidations of the major lens protein <scp>γS</scp> â€crystallin increase its aggregation during unfolding and oxidation. Protein Science, 2020, 29, 1945-1963.	7.6	25
10	Identification of a Structural Determinant for Selective Targeting of HDMX. Structure, 2020, 28, 847-857.e5.	3.3	2
11	Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. Journal of Biological Chemistry, 2020, 295, 15158-15171.	3.4	34
12	Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer. Nature Chemical Biology, 2020, 16, 1218-1226.	8.0	5
13	Hydrocarbon-Stitched Peptide Agonists of Glucagon-Like Peptide-1 Receptor. ACS Chemical Biology, 2020, 15, 1340-1348.	3.4	11
14	Identification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. Cell Chemical Biology, 2020, 27, 647-656.e6.	5.2	28
15	Homogeneous Oligomers of Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Molecular Cell, 2020, 79, 68-83.e7.	9.7	32
16	Site-Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX. Cell Reports, 2020, 30, 3229-3239.e6.	6.4	15
17	Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. Journal of Molecular Biology, 2020, 432, 1978-1995.	4.2	16
18	The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. Journal of Biological Chemistry, 2020, 295, 5177-5191.	3.4	16

THOMAS E WALES

#	Article	IF	CITATIONS
19	Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data. Methods in Molecular Biology, 2020, 2051, 407-435.	0.9	6
20	Differential impact of BTK active site inhibitors on the conformational state of full-length BTK. ELife, 2020, 9, .	6.0	25
21	Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nature Biotechnology, 2019, 37, 1186-1197.	17.5	187
22	Structural basis of the atypical activation mechanism of KRASV14I. Journal of Biological Chemistry, 2019, 294, 13964-13972.	3.4	24
23	Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science, 2019, 365, .	12.6	233
24	Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.	19.0	452
25	Hydrogen deuterium exchange mass spectrometry applied to chaperones and chaperone-assisted protein folding. Expert Review of Proteomics, 2019, 16, 613-625.	3.0	6
26	Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions. Journal of Biological Chemistry, 2019, 294, 8259-8272.	3.4	17
27	Tissue-Specific Oncogenic Activity of KRASA146T. Cancer Discovery, 2019, 9, 738-755.	9.4	127
28	Remodeling of the Binding Site of Nucleoside Diphosphate Kinase Revealed by X-ray Structure and H/D Exchange. Biochemistry, 2019, 58, 1440-1449.	2.5	1
29	Lipid-targeting pleckstrin homology domain turns its autoinhibitory face toward the TEC kinases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21539-21544.	7.1	19
30	Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Molecular Cell, 2018, 69, 729-743.e7.	9.7	45
31	Remodeling of HIV-1 Nef Structure by Src-Family Kinase Binding. Journal of Molecular Biology, 2018, 430, 310-321.	4.2	18
32	Hydrogen-Deuterium Exchange Mass Spectrometry to Study Protein Complexes. Methods in Molecular Biology, 2018, 1764, 153-171.	0.9	33
33	Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1–Npl4. Nature Structural and Molecular Biology, 2018, 25, 616-622.	8.2	82
34	Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chemical Biology, 2018, 25, 1006-1016.e8.	5.2	68
35	Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry. Journal of Chromatography A, 2017, 1523, 275-282.	3.7	24
36	Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts. Structure, 2017, 25, 1481-1494.e4.	3.3	44

THOMAS E WALES

#	Article	IF	CITATIONS
37	Allosteric sensitization of proapoptotic BAX. Nature Chemical Biology, 2017, 13, 961-967.	8.0	40
38	Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases. PLoS Computational Biology, 2016, 12, e1004826.	3.2	40
39	Dynamics of the <scp>T</scp> ecâ€family tyrosine kinase <scp>SH</scp> 3 domains. Protein Science, 2016, 25, 852-864.	7.6	8
40	Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants. Journal of the American Society for Mass Spectrometry, 2016, 27, 1048-1061.	2.8	11
41	Allosteric inhibition of antiapoptotic MCL-1. Nature Structural and Molecular Biology, 2016, 23, 600-607.	8.2	46
42	Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis. Journal of the American Society for Mass Spectrometry, 2016, 27, 662-668.	2.8	34
43	Structural Stability and Local Dynamics in Disease-Causing Mutants of Human Apolipoprotein A-I: What Makes the Protein Amyloidogenic?. Journal of Molecular Biology, 2016, 428, 449-462.	4.2	47
44	Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Biochemistry, 2015, 54, 6382-6391.	2.5	12
45	Inhibition of Pro-Apoptotic BAX by a Noncanonical Interaction Mechanism. Molecular Cell, 2015, 57, 873-886.	9.7	116
46	Analytical Aspects of Hydrogen Exchange Mass Spectrometry. Annual Review of Analytical Chemistry, 2015, 8, 127-148.	5.4	112
47	Membrane-Associated Conformation of HIV-1 Nef Investigated with Hydrogen Exchange Mass Spectrometry at a Langmuir Monolayer. Analytical Chemistry, 2015, 87, 7030-7035.	6.5	14
48	Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement. PLoS ONE, 2014, 9, e105629.	2.5	35
49	A Conserved Isoleucine Maintains the Inactive State of Bruton's Tyrosine Kinase. Journal of Molecular Biology, 2014, 426, 3656-3669.	4.2	10
50	Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data. Methods in Molecular Biology, 2013, 1007, 263-288.	0.9	58
51	Insights into Notch3 Activation and Inhibition Mediated by Antibodies Directed against Its Negative Regulatory Region. Journal of Molecular Biology, 2013, 425, 3192-3204.	4.2	26
52	Active-Site Inhibitors Modulate the Dynamic Properties of Human Monoacylglycerol Lipase: A Hydrogen Exchange Mass Spectrometry Study. Biochemistry, 2013, 52, 5016-5026.	2.5	17
53	Hydrogen Exchange-Mass Spectrometry Measures Stapled Peptide Conformational Dynamics and Predicts Pharmacokinetic Properties. Analytical Chemistry, 2013, 85, 11185-11188.	6.5	21
54	Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire. Protein Science, 2013, 22, 774-787.	7.6	37

THOMAS E WALES

#	Article	IF	CITATIONS
55	Activation Loop Dynamics Determine the Different Catalytic Efficiencies of B Cell– and T Cell–Specific Tec Kinases. Science Signaling, 2013, 6, ra76.	3.6	27
56	Noncanonical Role of the PDZ4 Domain of the Adaptor Protein PDZK1 in the Regulation of the Hepatic High Density Lipoprotein Receptor Scavenger Receptor Class B, Type I (SR-BI). Journal of Biological Chemistry, 2013, 288, 19845-19860.	3.4	14
57	Enhanced SH3/Linker Interaction Overcomes Abl Kinase Activation by Gatekeeper and Myristic Acid Binding Pocket Mutations and Increases Sensitivity to Small Molecule Inhibitors*. Journal of Biological Chemistry, 2013, 288, 6116-6129.	3.4	29
58	Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. International Reviews in Physical Chemistry, 2013, 32, 96-127.	2.3	36
59	Conformational Locking upon Cooperative Assembly of Notch Transcription Complexes. Structure, 2012, 20, 340-349.	3.3	60
60	HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. BMC Chemical Biology, 2012, 12, 1.	1.6	18
61	Evidence for Increased Exposure of the Notch1 Metalloprotease Cleavage Site upon Conversion to an Activated Conformation. Structure, 2011, 19, 546-554.	3.3	59
62	Conformational Dynamics of the Escherichia coli DNA Polymerase Manager Proteins UmuD and UmuD′. Journal of Molecular Biology, 2010, 398, 40-53.	4.2	20
63	High-Speed and High-Resolution UPLC Separation at Zero Degrees Celsius. Analytical Chemistry, 2008, 80, 6815-6820.	6.5	309
64	Dynamics of the polymerase manager protein UmuD: DNA damage tolerance in E. coli. FASEB Journal, 2008, 22, 591.4.	0.5	0
65	Allosteric Loss-of-function Mutations in HIV-1 Nef from a Long-term Non-progressor. Journal of Molecular Biology, 2007, 374, 121-129.	4.2	34
66	Conformational Features of the Full-Length HIV and SIV Nef Proteins Determined by Mass Spectrometryâ€. Biochemistry, 2006, 45, 7733-7739.	2.5	23
67	Partial Unfolding of Diverse SH3 Domains on a Wide Timescale. Journal of Molecular Biology, 2006, 357, 1592-1604.	4.2	63
68	Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. Journal of the American Society for Mass Spectrometry, 2006, 17, 1498-1509.	2.8	209
69	Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrometry Reviews, 2006, 25, 158-170.	5.4	767
70	Facile chemical synthesis and equilibrium unfolding properties of CopG. Protein Science, 2004, 13, 1918-1926.	7.6	8
71	The accuracy and precision of a new H/D exchange- and mass spectrometry-based technique for measuring the thermodynamic stability of proteins. Analytica Chimica Acta, 2003, 496, 225-232.	5.4	11
72	Thermodynamic stability measurements on multimeric proteins using a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-based method. Protein Science, 2002, 11, 841-851.	7.6	51

#	Article	IF	CITATIONS
73	The Energetic Contribution of Backboneâ^'Backbone Hydrogen Bonds to the Thermodynamic Stability of a Hyperstable P22 Arc Repressor Mutant. Journal of the American Chemical Society, 2001, 123, 7709-7710.	13.7	34