Olivier Gourdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11170735/publications.pdf

Version: 2024-02-01

687363 794594 21 432 13 19 citations h-index g-index papers 26 26 26 498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Er1.33Pt3Ga8: A modulated variant of the Er4Pt9Al24-structure type. Journal of Solid State Chemistry, 2016, 242, 161-167.	2.9	2
2	Toward a better understanding of the magnetocaloric effect: An experimental and theoretical study of MnFe4Si3. Journal of Solid State Chemistry, 2014, 216, 56-64.	2.9	14
3	Structure and Dynamics of Octamethyl-POSS Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 5579-5592.	3.1	27
4	Structure–property relationships along the Fe-substituted CuInS2 series: Tuning of thermoelectric and magnetic properties. Materials Chemistry and Physics, 2014, 147, 17-27.	4.0	25
5	Location and oxidation state of iron in Fe-substituted CuInS2 chalcopyrites. Journal of Solid State Chemistry, 2013, 197, 279-287.	2.9	11
6	Study of the antiferromagnetism of Mn5Si3: an inverse magnetocaloric effect material. Journal of Materials Chemistry, 2012, 22, 15275.	6.7	41
7	Rhombohedrally Distorted γ-Brasses Cr1â^'xFexGa. Inorganic Chemistry, 2010, 49, 11505-11515.	4.0	10
8	BaHg2Tl2. An Unusual Polar Intermetallic Phase with Strong Differentiation between the Neighboring Elements Mercury and Thallium. Journal of the American Chemical Society, 2009, 131, 8677-8682.	13.7	16
9	To What Extent Does the Zintlâ^'Klemm Formalism Work? The Eu(Zn1â^'xGex)2 Series. Inorganic Chemistry, 2009, 48, 6380-6390.	4.0	13
10	Structure Determination of Two Modulated \hat{I}^3 -Brass Structures in the Zn \hat{a} -Pd System through a (3 +) Tj ETQq0 (3 +) Tj ETQq0 (3 +) Tj ETQq0 (4 +) Tj ETQq0 (4 +) Tj ETQq0 (5 +) Tj ETQq0 (5 +) Tj ETQq0 (6 +) T	0 0 rgBT /C 4:0	Overlock 10 Tf
11	Atomic Distributions in the γ-Brass Structure of the Cuâ^'Zn System: A Structural and Theoretical Study. Inorganic Chemistry, 2007, 46, 251-260.	4.0	79
12	Intergrowth Compounds in the Zn-Rich Znâ^'Pd System:  Toward 1D Quasicrystal Approximants. Chemistry of Materials, 2006, 18, 1848-1856.	6.7	35
13	A New Superstructure for the BaAl4-Structure Type: An Experimental and Theoretical Study of La2NiAl7 ChemInform, 2005, 36, no.	0.0	O
14	A New Superstructure for the BaAl4-Structure Type: $\hat{a} \in \mathbb{Z}$ An Experimental and Theoretical Study of La2NiAl7. Chemistry of Materials, 2005, 17, 3661-3667.	6.7	26
15	Compositionâ€"Structure Relationships in Polar Intermetallics: Experimental and Theoretical Studies of LaNi1+xAl6-x (x = 0.44) ChemInform, 2004, 35, no.	0.0	O
16	Crystallographic, Electronic, and Magnetic Studies of ζ2-GaM (M = Cr, Mn or Fe):  Trends in Itinerant Magnetism. Inorganic Chemistry, 2004, 43, 3210-3218.	4.0	27
17	Compositionâ [^] Structure Relationships in Polar Intermetallics:Â Experimental and Theoretical Studies of LaNi1+xAl6-x(x= 0.44). Inorganic Chemistry, 2004, 43, 4604-4609.	4.0	19
18	Reinvestigation of the GaMn structure and theoretical studies of its electronic and magnetic properties. Journal of Solid State Chemistry, 2003, 173, 137-147.	2.9	32

#	Article	IF	CITATIONS
19	Crystallographic, electronic and magnetic studies of Ce4Ni6Al23: a new ternary intermetallic compound in the cerium–nickel–aluminum phase diagram. Journal of Solid State Chemistry, 2003, 174, 471-481.	2.9	19
20	Theoretical studies on cerium nickel aluminides: polar intermetallics with heavy fermion behavior. Journal of Solid State Chemistry, 2003, 176, 538-548.	2.9	11
21	Synthesis and Crystal Structure of the Pseudo-Hollandite Rb0.62Cr5Te8and Analysis of the Electronic Band Structures of the RbxCr5Te8Phases. Journal of Solid State Chemistry, 1997, 131, 326-334.	2.9	6