Michael V Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11170220/publications.pdf

Version: 2024-02-01

149 papers 11,437 citations

54 h-index 29157 104 g-index

152 all docs 152 docs citations

152 times ranked

8274 citing authors

#	Article	IF	CITATIONS
1	Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews, 1990, 15, 41-70.	9.0	1,323
2	Neurotoxicity of N-methyl-d-aspartate is markedly enhanced in developing rat central nervous system. Brain Research, 1988, 459, 200-203.	2.2	465
3	Plasticity in the developing brain: Implications for rehabilitation. Developmental Disabilities Research Reviews, 2009, 15, 94-101.	2.9	445
4	The Developing Nervous System: A Series of Review Articles: Neurobiology of Hypoxic-Ischemic Injury in the Developing Brain. Pediatric Research, 2001, 49, 735-741.	2.3	390
5	Apoptosis Has a Prolonged Role in the Neurodegeneration after Hypoxic Ischemia in the Newborn Rat. Journal of Neuroscience, 2000, 20, 7994-8004.	3.6	388
6	Cerebral plasticity: Windows of opportunity in the developing brain. European Journal of Paediatric Neurology, 2017, 21, 23-48.	1.6	329
7	Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Developmental Medicine and Child Neurology, 2009, 51, 697-704.	2.1	276
8	PARPâ€1 gene disruption in mice preferentially protects males from perinatal brain injury. Journal of Neurochemistry, 2004, 90, 1068-1075.	3.9	266
9	Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurology, The, 2011, 10, 372-382.	10.2	247
10	MK-801 protects the neonatal brain from hypoxic-ischemic damage. European Journal of Pharmacology, 1987, 140, 359-361.	3.5	244
11	Sex and the pathogenesis of cerebral palsy. Developmental Medicine and Child Neurology, 2007, 49, 74-78.	2.1	240
12	Excitotoxicity in Perinatal Brain Injury. Brain Pathology, 2005, 15, 234-240.	4.1	235
13	Clinical disorders of brain plasticity. Brain and Development, 2004, 26, 73-80.	1.1	222
14	Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Annals of Neurology, 1991, 29, 529-541.	5.3	217
15	Hypoxic-Ischemic Encephalopathy in the Term Infant. Clinics in Perinatology, 2009, 36, 835-858.	2.1	216
16	Neurotransmitters and vulnerability of the developing brain. Brain and Development, 1995, 17, 301-306.	1.1	196
17	Magnesium reduces N- (NMDA)-mediated brain injury in perinatal rats. Neuroscience Letters, 1990, 109, 234-238.	2.1	183
18	Plasticity and injury in the developing brain. Brain and Development, 2009, 31, 1-10.	1.1	177

#	Article	IF	Citations
19	Differential ontogenic development of three receptors comprising the NMDA receptor/channel complex in the rat hippocampus. Experimental Neurology, 1990, 110, 237-247.	4.1	172
20	Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Experimental Neurology, 2004, 189, 58-65.	4.1	169
21	Perinatal Hypoxia-Ischemia Disrupts Striatal High-Affinity [3H]Glutamate Uptake into Synaptosomes. Journal of Neurochemistry, 1986, 47, 1614-1619.	3.9	168
22	Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury. Brain and Development, 1997, 19, 326-338.	1.1	156
23	Neurotransmitter alterations in a model of perinatal hypoxicâ€ischemic brain injury. Annals of Neurology, 1983, 13, 511-518.	5.3	154
24	Possible Mechanisms in Infants for Selective Basal Ganglia Damage From Asphyxia, Kernicterus, or Mitochondrial Encephalopathies. Journal of Child Neurology, 2000, 15, 588-591.	1.4	142
25	Mechanisms of Hypoxic Neurodegeneration in the Developing Brain. Neuroscientist, 2002, 8, 212-220.	3.5	121
26	Ontogeny of Neurochemical Markers for Noradrenergic, GABAergic and Cholinergic Neurons in Neocortex Lesioned with Methylazoxymethanol Acetate. Journal of Neurochemistry, 1980, 34, 1429-1441.	3.9	112
27	Altered Development of Glutamate and GABA Receptors in the Basal Ganglia of Girls with Rett Syndrome. Experimental Neurology, 1999, 156, 345-352.	4.1	112
28	Role of Glutamate Receptor-Mediated Excitotoxicity in Bilirubin-Induced Brain Injury in the Gunn Rat Model. Experimental Neurology, 1998, 150, 21-29.	4.1	108
29	Neurobiology of Rett syndrome: a genetic disorder of synapse development. Brain and Development, 2001, 23, S206-S213.	1.1	106
30	Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development. Brain Research, 1992, 583, 54-70.	2.2	99
31	Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia. Journal of Pediatrics, 1998, 132, 709-713.	1.8	99
32	Excitotoxicity in neonatal hypoxia. Mental Retardation and Developmental Disabilities Research Reviews, 2001, 7, 229-234.	3.6	99
33	Development of amino acid receptors in frontal cortex from girls with Rett syndrome. Annals of Neurology, 1999, 45, 541-545.	5.3	98
34	Quantitative assessment of neuroprotection against NMDA-induced brain injury. Experimental Neurology, 1989, 106, 289-296.	4.1	95
35	Selective vulnerability in the neonatal brain. Annals of Neurology, 1998, 44, 155-156.	5.3	91
36	A Diagnostic Approach for Cerebral Palsy in the Genomic Era. NeuroMolecular Medicine, 2014, 16, 821-844.	3.4	89

#	Article	lF	CITATIONS
37	The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neuroscience Letters, 1986, 71, 13-18.	2.1	88
38	Neuroprotective effects of MK-801, TCP, PCP and CPP against N-methyl-d-aspartate induced neurotoxicity in an in vivo perinatal rat model. Brain Research, 1989, 490, 33-40.	2.2	85
39	Hypoxic-ischemic Brain Injury in the Newborn. Clinics in Perinatology, 1997, 24, 627-654.	2.1	85
40	Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. Journal of Pediatrics, 1992, 121, 131-135.	1.8	84
41	Mouse model of intrauterine inflammation: Sex-specific differences in long-term neurologic and immune sequelae. Brain, Behavior, and Immunity, 2014, 38, 142-150.	4.1	74
42	Perinatal Hypoxic-Ischemic Brain Injury Enhances Quisqualic Acid-Stimulated Phosphoinositide Turnover. Journal of Neurochemistry, 1988, 51, 353-359.	3.9	72
43	Protective effect of erythropoietin in neonatal hypoxic ischemia in mice. NeuroReport, 2003, 14, 1757-1761.	1.2	72
44	Hypoxia-ischemia produces focal disruption of glutamate receptors in developing brain. Developmental Brain Research, 1987, 34, 33-39.	1.7	67
45	A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurology, 2015, 15, 209.	1.8	67
46	Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. Journal of Controlled Release, 2017, 249, 173-182.	9.9	67
47	In Vitro and In Vivo Pharmacology oftrans-andcis- $(\hat{A}\pm)$ -1-Amino-1,3-Cyclopentanedicarboxylic Acid: Dissociation of Metabotropic and Ionotropic Excitatory Amino Acid Receptor Effects. Journal of Neurochemistry, 1991, 56, 1789-1796.	3.9	65
48	Glutamate recognition sites in human fetal brain. Neuroscience Letters, 1988, 84, 131-136.	2.1	63
49	Hypoxic and ischemic disorders of infants and children. Lecture for 38th Meeting of Japanese Society of Child Neurology, Tokyo, Japan, July 1996. Brain and Development, 1997, 19, 235-239.	1.1	62
50	Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: Observations in distinguishing genetic-metabolic from acquired causes. Journal of Pediatrics, 1997, 131, 240-245.	1.8	61
51	Developmental Aspects of Epileptogenesis. Epilepsia, 1996, 37, S2-9.	5.1	58
52	Prolonged suppression of brain nitric oxide synthase activity by 7-nitroindazole protects against cerebral hypoxic–ischemic injury in neonatal rat. Brain and Development, 2001, 23, 349-354.	1.1	58
53	Models of Cerebral Palsy. Journal of Child Neurology, 2005, 20, 984-987.	1.4	58
54	Ischemia-Induced Neuroinflammation Is Associated with Disrupted Development of Oligodendrocyte Progenitors in a Model of Periventricular Leukomalacia. Developmental Neuroscience, 2013, 35, 182-196.	2.0	58

#	Article	IF	CITATIONS
55	Cerebral Palsy. NeuroMolecular Medicine, 2006, 8, 435-450.	3.4	57
56	Novel treatments after experimental brain injury. Seminars in Fetal and Neonatal Medicine, 2000, 5, 75-86.	2.7	53
57	Selective vulnerability of the developing brain to lead. Current Opinion in Neurology, 1998, 11, 689-693.	3.6	51
58	Transient Hypoxia Alters Striatal Catecholamine Metabolism in Immature Brain: An In Vivo Microdialysis Study. Journal of Neurochemistry, 1990, 54, 605-611.	3.9	50
59	Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat model. Synapse, 1990, 6, 179-188.	1.2	50
60	The severity of excitotoxic brain injury is dependent on brain temperature in immature rat. Neuroscience Letters, 1991, 126, 83-86.	2.1	48
61	Effects of postnatal hypoxia-ischemia on cholinergic neurons in the developing rat forebrain: choline acetyltransferase immunocytochemistry. Developmental Brain Research, 1987, 34, 41-50.	1.7	47
62	Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. metabotropic receptors. Journal of Comparative Neurology, 1997, 386, 16-28.	1.6	47
63	Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters. Frontiers in Cellular Neuroscience, 2015, 9, 173.	3.7	47
64	Brain plasticity in paediatric neurology. European Journal of Paediatric Neurology, 2003, 7, 105-113.	1.6	46
65	Clinical Variability in Rett Syndrome. Journal of Child Neurology, 2003, 18, 662-668.	1.4	45
66	Global Gene Expression in the Developing Rat Brain After Hypoxic Preconditioning: Involvement of Apoptotic Mechanisms?. Pediatric Research, 2007, 61, 444-450.	2.3	45
67	Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxic–ischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2359-2369.	3.3	45
68	Quantitative autoradiographic localization of NMDA, quisqualate and PCP receptors in the frog tectum. Brain Research, 1989, 482, 155-158.	2.2	42
69	Rett Syndrome and Neuronal Development. Journal of Child Neurology, 2005, 20, 759-763.	1.4	40
70	Gabapentin Neuroprotection and Seizure Suppression in Immature Mouse Brain Ischemia. Pediatric Research, 2008, 64, 81-85.	2.3	40
71	Sex-Specific Activation of Cell Death Signalling Pathways in Cerebellar Granule Neurons Exposed to Oxygen Glucose Deprivation Followed by Reoxygenation. ASN Neuro, 2011, 3, AN20100032.	2.7	40
72	AMPA glutamate receptor antagonism reduces neurologic injury after hypothermic circulatory arrest. Annals of Thoracic Surgery, 1995, 59, 579-584.	1.3	39

#	Article	IF	Citations
73	Learning, Memory, and Transcription Factors. Pediatric Research, 2003, 53, 369-374.	2.3	36
74	Randomized open-label trial of dextromethorphan in Rett syndrome. Neurology, 2017, 89, 1684-1690.	1.1	36
75	The selective ionotropic-type quisqualate receptor agonist AMPA is a potent neurotoxin in immature rat brain. Brain Research, 1990, 526, 165-168.	2.2	35
76	The ontogeny of glutamate receptors in rat barrel field cortex. Developmental Brain Research, 1995, 84, 11-25.	1.7	35
77	Expression of NMDA receptor subunit mRNA after MK-801 treatment in neonatal rats. Developmental Brain Research, 1998, 109, 211-220.	1.7	34
78	<i>SYNGAP1</i> mutations: Clinical, genetic, and pathophysiological features. International Journal of Developmental Neuroscience, 2019, 78, 65-76.	1.6	34
79	Neural Stem Cells Reduce Brain Injury After Unilateral Carotid Ligation. Pediatric Neurology, 2008, 38, 86-92.	2.1	33
80	Effect of glycine and glycine receptor antagonists on NMDA-induced brain injury. Neuroscience Letters, 1989, 107, 279-283.	2.1	32
81	Quinolinate-induced injury is enhanced in developing rat brain. Developmental Brain Research, 1994, 83, 224-232.	1.7	32
82	Neurobiology of Rett Syndrome. Journal of Child Neurology, 2003, 18, 688-692.	1.4	32
83	HA-996 (1-hydroxy-3-aminopyrrolidone-2) selectively reduces (NMDA)-mediated brain damage. Neuroscience Letters, 1989, 104, 167-170.	2.1	29
84	Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: II. ?-ampa and kainate receptors. , 1997, 386, 29-45.		29
85	Heightened Delta Power during Slow-Wave-Sleep in Patients with Rett Syndrome Associated with Poor Sleep Efficiency. PLoS ONE, 2015, 10, e0138113.	2.5	29
86	RNA editing of a human glutamate receptor subunit. Molecular Brain Research, 1994, 22, 323-328.	2.3	24
87	Murine model: maternal administration of stem cells for prevention of prematurity. American Journal of Obstetrics and Gynecology, 2015, 212, 639.e1-639.e10.	1.3	24
88	Neonatal electrolytic lesions of the basal forebrain stunt plasticity in mouse barrel field cortex. International Journal of Developmental Neuroscience, 2002, 20, 481-489.	1.6	23
89	Different effects of high- and low-dose phenobarbital on post-stroke seizure suppression and recovery in immature CD1 mice. Epilepsy Research, 2011, 94, 138-148.	1.6	23
90	Nanomedicine in cerebral palsy. International Journal of Nanomedicine, 2013, 8, 4183.	6.7	23

#	Article	IF	CITATIONS
91	Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Adverse Neurodevelopmental Outcomes. Reproductive Sciences, 2016, 23, 785-794.	2.5	23
92	Nonketotic hyperglycinemia: Pathophysiological role of NMDA-type excitatory amino acid receptors. Annals of Neurology, 1990, 27, 449-450.	5.3	22
93	MRI for neonatal encephalopathy in full-term infants. Lancet, The, 2003, 361, 713-714.	13.7	21
94	Delayed Increase in Neuronal Nitric Oxide Synthase Immunoreactivity in Thalamus and Other Brain Regions after Hypoxic–Ischemic Injury in Neonatal Rats. Experimental Neurology, 2001, 168, 323-333.	4.1	20
95	In vivo Magnetization Transfer MRI Shows Dysmyelination in an Ischemic Mouse Model of Periventricular Leukomalacia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2009-2018.	4.3	20
96	Recent advances in understanding synaptic abnormalities in Rett syndrome. F1000Research, 2015, 4, 1490.	1.6	20
97	Impact of age and strain on ischemic brain injury and seizures after carotid ligation in immature mice. International Journal of Developmental Neuroscience, 2009, 27, 271-277.	1.6	19
98	Encephalopathies. , 2011, , 2061-2069.e1.		18
99	Strain Variability, Injury Distribution, and Seizure Onset in a Mouse Model of Stroke in the Immature Brain. Developmental Neuroscience, 2005, 27, 127-133.	2.0	17
100	Dextromethorphan protects male but not female mice with brain ischemia. NeuroReport, 2006, 17, 1319-1322.	1.2	17
101	Derivation of Glial Restricted Precursors from E13 mice. Journal of Visualized Experiments, 2012, , .	0.3	17
102	Excitotoxic Brain Injury Suppresses Striatal High-Affinity Glutamate Uptake in Perinatal Rats. Journal of Neurochemistry, 1991, 56, 933-937.	3.9	16
103	Cost-effective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy. Medical Devices: Evidence and Research, 2013, 6, 1.	0.8	15
104	Risk Factors for Attention and Behavioral Issues in Pediatric Sickle Cell Disease. Clinical Pediatrics, 2015, 54, 1087-1093.	0.8	15
105	Are dopamine receptor and transporter changes in Rett syndrome reflected in Mecp2-deficient mice?. Experimental Neurology, 2018, 307, 74-81.	4.1	15
106	Neuroprotective synergism of 2-amino-3-phosphonoproprionate (d,l-AP3) and MK-801 against ibotenate induced brain injury. Neuroscience Letters, 1992, 145, 213-216.	2.1	14
107	Nanotechnology Approaches to Targeting Inflammation and Excitotoxicity in a CanineÂModelÂof Hypothermic Circulatory Arrest–Induced Brain Injury. Annals of Thoracic Surgery, 2016, 102, 743-750.	1.3	14
108	Dexamethasone potentiates NMDA receptor-mediated neuronal injury in the postnatal rat. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1994, 270, 105-113.	0.8	13

#	Article	IF	CITATIONS
109	Ischemia and excitotoxins in development. Mental Retardation and Developmental Disabilities Research Reviews, 1995, 1, 193-200.	3.6	13
110	Apoptosis Detection in Brain Using Low-Magnification Dark-Field Microscopy. Experimental Neurology, 1999, 158, 254-260.	4.1	13
111	Injury and plasticity in the developing brain\$star;. Experimental Neurology, 2003, 184, 37-41.	4.1	13
112	Correlating Oxygen Delivery During Cardiopulmonary Bypass With the Neurologic Injury Biomarker Ubiquitin C-Terminal Hydrolase L1 (UCH-L1). Journal of Cardiothoracic and Vascular Anesthesia, 2018, 32, 2485-2492.	1.3	12
113	Effects of neonatal cholinergic basal forebrainlesions on excitatory amino acid receptors in neocortex. International Journal of Developmental Neuroscience, 1998, 16, 645-660.	1.6	11
114	Immature Mouse Unilateral Carotid Ligation Model of Stroke. Journal of Child Neurology, 2005, 20, 980-983.	1.4	11
115	Everolimus and intensive behavioral therapy in an adolescent with tuberous sclerosis complex and severe behavior. Epilepsy & Behavior Case Reports, 2013, 1, 122-125.	1.5	11
116	Temporal- and Location-Specific Alterations of the GABA Recycling System in Mecp2 KO Mouse Brains. Journal of Central Nervous System Disease, 2014, 6, JCNSD.S14012.	1.9	10
117	Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy. Frontiers in Neurology, 2018, 9, 304.	2.4	10
118	Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiology of Learning and Memory, 2019, 165, 106962.	1.9	9
119	New insights into the pathogenesis and prevention of tuberous sclerosis-associated neuropsychiatric disorders (TAND). F1000Research, 2017, 6, 859.	1.6	9
120	A reverse transcription-polymerase chain reaction study of p75 nerve growth factor receptor gene expression in developing rat cerebellum. International Journal of Developmental Neuroscience, 1994, 12, 255-262.	1.6	8
121	Hypoxic-ischemic encephalopathy. Current Treatment Options in Neurology, 2000, 2, 109-115.	1.8	8
122	Developmental disorders of activity dependent neuronal plasticity. Indian Journal of Pediatrics, 2001, 68, 423-426.	0.8	8
123	Brain Injury in Canine Models of Cardiac Surgery. Journal of Neuropathology and Experimental Neurology, 2014, 73, 1134-1143.	1.7	8
124	Perinatal biomarkers in prematurity: Early identification of neurologic injury. International Journal of Developmental Neuroscience, 2014, 36, 25-31.	1.6	8
125	Ongoing Cerebral Vasculitis During Treatment of Rocky Mountain Spotted Fever. Pediatric Neurology, 2015, 53, 434-438.	2.1	8
126	Co-Occurrence of Neurodevelopmental Disorders in Pediatric Sickle Cell Disease. Journal of Developmental and Behavioral Pediatrics, 2021, 42, 463-471.	1.1	8

#	Article	IF	Citations
127	Subthalamic nucleus involvement in children: AÂneuroimaging pattern-recognition approach. European Journal of Paediatric Neurology, 2014, 18, 249-256.	1.6	7
128	Early Neurodevelopmental Screening in Tuberous Sclerosis Complex: A Potential Window of Opportunity. Pediatric Neurology, 2014, 51, 398-402.	2.1	7
129	Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact. Stem Cells and Development, 2016, 25, 975-985.	2.1	7
130	N-Methyl-D-Aspartate-Mediated Injury Enhances Quisqualic Acid-Stimulated Phosphoinositide Turnover in Perinatal Rats. Journal of Neurochemistry, 1992, 59, 963-971.	3.9	6
131	Neuronal death in development, aging, and disease. Neurobiology of Aging, 1994, 15, 235-236.	3.1	6
132	Autism Phenotypes in Tuberous Sclerosis Complex. Journal of Child Neurology, 2015, 30, 1871-1876.	1.4	6
133	Education of a Child Neurologist: Developmental Neuroscience Relevant to Child Neurology. Seminars in Pediatric Neurology, 2011, 18, 133-138.	2.0	5
134	Characterization of the Basal Ganglia Using Diffusion Tensor Imaging in Children with Selfâ€Injurious Behavior and Tuberous Sclerosis Complex. Journal of Neuroimaging, 2019, 29, 506-511.	2.0	5
135	Developmental neurobiology: New concepts in learning, memory, and neuronal development. Mental Retardation and Developmental Disabilities Research Reviews, 1998, 4, 20-25.	3.6	4
136	Inflammatory profile in a canine model of hypothermic circulatory arrest. Journal of Surgical Research, 2021, 264, 260-273.	1.6	4
137	Vulnerability of preterm males to adverse obstetric factors. Developmental Medicine and Child Neurology, 2009, 51, 496-497.	2.1	3
138	Development of Neurotransmitters. , 2004, , 1706-1713.		3
139	Physiological and Pathophysiological Roles of Excitatory Amino Acids during Central Nervous System Development. , 1992, , 19-30.		2
140	Homozygous factorâ€V mutation as a genetic cause of perinatal thrombosis and cerebral palsy. Developmental Medicine and Child Neurology, 1999, 41, 777-780.	2.1	2
141	Cognitive and Functional Impairment Associated With Care in the PICU*. Pediatric Critical Care Medicine, 2014, 15, 676-677.	0.5	2
142	Development, Structure, and Function of the Brain and Neuromuscular Systems., 2006,, 767-779.		2
143	A conceptual framework for plasticity in the developing brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 173, 57-66.	1.8	1
144	Ontogeny of nonâ€NMDA glutamate receptors in rat barrel field cortex: I. metabotropic receptors. Journal of Comparative Neurology, 1997, 386, 16-28.	1.6	1

#	Article	IF	CITATIONS
145	Serotonin Dysfunction in Autism. , 2008, , 111-132.		1
146	"Hot spots―in the brain. Critical Care Medicine, 2012, 40, 1996-1997.	0.9	0
147	Evidence for a mechanism to lower glutamate levels in fetal hypoxia–ischemia caused by asphyxia. Developmental Medicine and Child Neurology, 2016, 58, 9-10.	2.1	0
148	Umbilical Cord Blood NOS1 as a Potential Biomarker of Neonatal Encephalopathy. Frontiers in Pediatrics, 2017, 5, 112.	1.9	0
149	Development of Neurotransmitters. , 2011, , 1774-1782.		0