Jiashen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116955/publications.pdf

Version: 2024-02-01

218677 233421 2,220 45 65 26 citations h-index g-index papers 66 66 66 2866 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and loT applications. Nature Communications, 2018, 9, 5197.	12.8	206
2	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	27.0	113
3	PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surface and Coatings Technology, 2006, 201, 575-580.	4.8	110
4	Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydrate Polymers, 2020, 227, 115343.	10.2	87
5	Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. International Journal of Pharmaceutics, 2015, 496, 732-740.	5.2	86
6	Isolation and characterization of biofunctional keratin particles extracted from wool wastes. Powder Technology, 2013, 246, 356-362.	4.2	80
7	Hierarchical Porous Poly(<scp>l</scp> -lactic acid) Nanofibrous Membrane for Ultrafine Particulate Aerosol Filtration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46261-46268.	8.0	77
8	Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polymer Degradation and Stability, 2009, 94, 1800-1807.	5.8	72
9	A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomaterialia, 2010, 6, 2013-2019.	8.3	67
10	A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials, 2013, 34, 9451-9461.	11.4	59
11	Formation of apatite on poly(?-hydroxy acid) in an accelerated biomimetic process. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 68-76.	3.4	57
12	Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. International Journal of Biological Macromolecules, 2021, 167, 1479-1490.	7.5	57
13	Fabrication of silk fibroin nanoparticles for controlled drug delivery. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	54
14	An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.	11.4	54
15	Strategy to introduce an hydroxyapatite–keratin nanocomposite into a fibrous membrane for bone tissue engineering. Journal of Materials Chemistry B, 2013, 1, 432-437.	5.8	48
16	Fabrication and structural characterization of porous biodegradable poly(dl-lactic-co-glycolic acid) scaffolds with controlled range of pore sizes. Polymer Degradation and Stability, 2005, 87, 487-493.	5.8	46
17	Biodegradable weftâ€knitted intestinal stents: Fabrication and physical changes investigation <i>in vitro</i> i> degradation. Journal of Biomedical Materials Research - Part A, 2014, 102, 982-990.	4.0	43
18	Composite coating of bonelike apatite particles and collagen fibers on poly L-lactic acid formed through an accelerated biomimetic coprecipitation process. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 315-322.	3.4	41

#	Article	IF	Citations
19	Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption. Carbon, 2020, 160, 307-316.	10.3	40
20	Generation of Silk Fibroin Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2013, 52, 3752-3761.	3.7	36
21	Design of an Ultrasensitive Flexible Bend Sensor Using a Silver-Doped Oriented Poly(vinylidene) Tj ETQq1 1 0.784	1314 rgBT 8.0	/Overlock 10 36
22	Fabrication and degradation of poly(l-lactic acid) scaffolds with wool keratin. Composites Part B: Engineering, 2009, 40, 664-667.	12.0	32
23	Hydraulic Permeability of Polyglycolic Acid Scaffolds as a Function of Biomaterial Degradation. Journal of Biomaterials Applications, 2005, 19, 253-266.	2.4	30
24	Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. Journal of Supercritical Fluids, 2015, 103, 1-9.	3.2	30
25	Screen-Printed Graphite Nanoplate Conductive Ink for Machine Learning Enabled Wireless Radiofrequency-Identification Sensors. ACS Applied Nano Materials, 2019, 2, 6197-6208.	5.0	29
26	Electrospun highly porous poly(L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Materials Science and Engineering C, 2020, 117, 111359.	7.3	29
27	Tunable Graphene/Nitrocellulose Temperature Alarm Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 13790-13800.	8.0	28
28	Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 896-902.	3.4	27
29	EcoFlex Sponge with Ultrahigh Oil Absorption Capacity. ACS Applied Materials & amp; Interfaces, 2019, 11, 20037-20044.	8.0	26
30	Recent Progress in Tissue Engineering and Regenerative Medicine. Journal of Biomaterials and Tissue Engineering, 2016, 6, 755-766.	0.1	26
31	Hierarchical porous silk fibroin/poly(L-lactic acid) fibrous membranes towards vascular scaffolds. International Journal of Biological Macromolecules, 2021, 166, 1111-1120.	7.5	24
32	Transfer of apatite coating from porogens to scaffolds: Uniform apatite coating within porous poly(DL-lactic-co-glycolic acid) scaffoldin vitro. Journal of Biomedical Materials Research - Part A, 2007, 80A, 226-233.	4.0	23
33	Smart moisture management and thermoregulation properties of stimuli-responsive cotton modified with polymer brushes. RSC Advances, 2014, 4, 63691-63695.	3.6	23
34	Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres. Materials Science and Engineering C, 2020, 116 , 111168 .	7.3	23
35	Fabrication of hierarchical porous poly (I-lactide) (PLLA) fibrous membrane by electrospinning. Polymer, 2021, 226, 123797.	3.8	23
36	Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Analytical Chemistry, 2022, 94, 3320-3327.	6.5	23

#	Article	IF	CITATIONS
37	Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application. Scientific Reports, 2016, 6, 31149.	3.3	22
38	Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Applied Surface Science, 2019, 476, 513-520.	6.1	22
39	Biomimetic Presentation of Cryptic Ligands <i>via</i> Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano, 2020, 14, 4027-4035.	14.6	22
40	Hierarchical Porous Recycled PET Nanofibers for High-Efficiency Aerosols and Virus Capturing. ACS Applied Materials & Diterfaces, 2021, 13, 49380-49389.	8.0	22
41	Fabrication, characterization, and in vitro evaluation of biomimetic silk fibroin porous scaffolds via supercritical CO2 technology. Journal of Supercritical Fluids, 2019, 150, 86-93.	3.2	21
42	Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. Journal of Materials Science: Materials in Medicine, 2008, 19, 2563-2567.	3.6	20
43	Antibacterial Properties of Nanosilver PLLA Fibrous Membranes. Journal of Nanomaterials, 2009, 2009, 1-5.	2.7	19
44	Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2. Materials Letters, 2016, 167, 175-178.	2.6	19
45	Hybrid coating of hydroxyapatite and collagen within poly(<scp>D,L</scp> â€lacticâ€ <i>co</i> â€glycolic) Tj ETQq.	1 1 0.7843 3.4	314 rgBT /C 17
46	A Review on Chitosan for the Removal of Heavy Metals Ions. Journal of Fiber Bioengineering and Informatics, 2019, 12, 103-128.	0.2	17
47	Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites. Applied Composite Materials, 2018, 25, 853-860.	2.5	16
48	Controllable release of vascular endothelial growth factor (VEGF) by wheel spinning alginate/silk fibroin fibers for wound healing. Materials and Design, 2021, 212, 110231.	7.0	16
49	Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes. Electrochimica Acta, 2016, 212, 800-807.	5.2	15
50	Transfer of collagen coating from porogen to scaffold: Collagen coating within poly(dl-lactic-co-glycolic acid) scaffold. Composites Part B: Engineering, 2007, 38, 317-323.	12.0	14
51	5-Fluorouracil-loaded poly-l-lactide fibrous membrane for the prevention of intestinal stent restenosis. Journal of Materials Science, 2013, 48, 6186-6193.	3.7	13
52	Hierarchical porous poly(l-lactic acid)/SiO2 nanoparticles fibrous membranes for oil/water separation. Journal of Materials Science, 2020, 55, 16096-16110.	3.7	13
53	Cross-linked chitosan coated biodegradable porous electrospun membranes for the removal of synthetic dyes. Reactive and Functional Polymers, 2021, 166, 104995.	4.1	11
54	Nano Polypeptide Particles Reinforced Polymer Composite Fibers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3871-3876.	8.0	9

#	Article	IF	CITATIONS
55	Novel pH-sensitive drug-loaded electrospun nanofibers based on regenerated keratin for local tumor chemotherapy. Textile Reseach Journal, 2020, 90, 2336-2349.	2.2	9
56	Modification of negative auto-photosensitive polyimide. Journal of Applied Polymer Science, 2000, 77, 943-947.	2.6	7
57	Toxicity study of isolated polypeptide from wool hydrolysate. Food and Chemical Toxicology, 2013, 57, 338-345.	3.6	7
58	Engineering the biological performance of hierarchical nanostructured poly(ε-carpolactone) scaffolds for bone tissue engineering. CIRP Annals - Manufacturing Technology, 2020, 69, 217-220.	3.6	6
59	Generation of biofunctional and biodegradable electrospun nanofibers composed of poly (<scp>I</scp> -lactic acid) and wool isoelectric precipitate. Textile Reseach Journal, 2014, 84, 355-367.	2.2	5
60	Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide. ACS Omega, 2021, 6, 18458-18464.	3.5	5
61	Biomimetic coating of apatite/collagen composite on Poly L-lactic Acid facilitates cell seeding. , 2005, 2005, 4087-90.		3
62	Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes. Journal of Thermal Biology, 2016, 58, 1-7.	2.5	3
63	Cytotoxicity and Cell Adhesion of PLLA/keratin Composite Fibrous Membranes. IFMBE Proceedings, 2009, , 1492-1495.	0.3	1
64	Preparation and Characterization of the Silk Fibroin 3D Scaffolds with Porous and Interconnected Structure. Journal of Fiber Bioengineering and Informatics, 2018, 11, 183-195.	0.2	1
65	A One-Step Method to Fabricate PLLA Scaffolds With Deposition of Bioactive Hydroxyapatite and Collagen Using Ice-Based Microporogens. , 2009, , .		0