
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11169527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures. Journal of the European Optical Society-Rapid Publications, 2021, 17, .	1.9	12
2	Fabrication of Polarization Control Devices using Metal Grating Structures. , 2021, , .		0
3	Fabrication and characterization of plasmonic band-stop filter using Ag grating. EPJ Web of Conferences, 2020, 238, 05006.	0.3	Ο
4	Fabrication and characterization of a binary diffractive lens for controlling focal distribution. Applied Optics, 2020, 59, 742.	1.8	3
5	Temperature Dependence of Stokes Shifts of Excitons and Biexcitons in Al _{0.61} Ga _{0.39} N Epitaxial Layer. Physica Status Solidi (B): Basic Research, 2018, 255, 1700374.	1.5	4
6	Cathodoluminescence study on local high-energy emissions at dark spots in AlGaN/AlGaN multiple quantum wells. Japanese Journal of Applied Physics, 2018, 57, 060311.	1.5	2
7	Effect of thermal annealing on AlN films grown on sputtered AlN templates by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2018, 57, 01AD05.	1.5	41
8	Selective area growth of GaN on trench-patterned nonpolar bulk GaN substrates. Journal of Crystal Growth, 2017, 468, 851-855.	1.5	1
9	High-temperature photoluminescence and photoluminescence excitation spectroscopy of Al _{0.60} Ga _{0.40} N/Al _{0.70} Ga _{0.30} N multiple quantum wells. Applied Physics Express, 2017, 10, 021002.	2.4	8
10	Confinement-enhanced biexciton binding energy in AlGaN-based quantum wells. Applied Physics Express, 2017, 10, 051003.	2.4	2
11	Structural study of GaN grown on nonpolar bulk GaN substrates with trench patterns. Japanese Journal of Applied Physics, 2017, 56, 125504.	1.5	1
12	Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	12
13	Fabrication of high-crystallinity a-plane AlN films grown on r-plane sapphire substrates by modulating buffer-layer growth temperature and thermal annealing conditions. Journal of Crystal Growth, 2017, 468, 845-850.	1.5	23
14	Fabrication and characterization of a binary diffractive lens for controlling the focal length and depth of focus. , 2017, , .		0
15	Surface thermal stability of free-standing GaN substrates. Japanese Journal of Applied Physics, 2016, 55, 01AC08.	1.5	2
16	Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thicka-plane AlN films grown onr-plane sapphire substrates. Applied Physics Express, 2016, 9, 081001.	2.4	13
17	Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. Journal of Crystal Growth, 2016, 456, 155-159.	1.5	231
18	Annealing of an AlN buffer layer in N ₂ –CO for growth of a high-quality AlN film on sapphire. Applied Physics Express, 2016, 9, 025501.	2.4	166

#	Article	lF	CITATIONS
19	Microstructural analysis of an epitaxial AlN thick film/trench-patterned template by three-dimensional reciprocal lattice space mapping technique. Applied Physics Express, 2016, 9, 111001.	2.4	6
20	Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle. Japanese Journal of Applied Physics, 2016, 55, 05FL02.	1.5	48
21	Effect of surface pretreatment of r-plane sapphire substrates on the crystal quality of a-plane AlN. Japanese Journal of Applied Physics, 2016, 55, 05FA12.	1.5	8
22	Electron microscopy analysis of microstructure of postannealed aluminum nitride template. Applied Physics Express, 2016, 9, 065502.	2.4	10
23	Detecting High-refractive-index (n>1.5) Media using Surface Plasmon Sensor with One-dimensional Au Diffraction Grating on Glass Substrate. , 2016, , .		Ο
24	Fabrication of AlGaN multiple quantum wells on sapphire with lattice-relaxation layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 361-364.	0.8	0
25	Growth Characteristics of Graphene Film by Chemical Vapor Deposition Method Using Nozzle Gas Injection. E-Journal of Surface Science and Nanotechnology, 2015, 13, 265-268.	0.4	0
26	Study on AlN growth conditions for hydride vapor phase epitaxy. Transactions of the Materials Research Society of Japan, 2015, 40, 395-396.	0.2	0
27	Excitationâ€dependent carrier dynamics in Alâ€rich AlGaN layers and multiple quantum wells. Physica Status Solidi (B): Basic Research, 2015, 252, 1043-1049.	1.5	6
28	Extraordinary Optical Transmission Exhibited by Surface Plasmon Polaritons in a Double-Layer Wire Grid Polarizer. Plasmonics, 2015, 10, 1657-1662.	3.4	19
29	Fabrication and optical characterization of a 2D metal periodic grating structure for cold filter application. Proceedings of SPIE, 2015, , .	0.8	1
30	HVPE homoepitaxy on freestanding AlN substrate with trench pattern. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 334-337.	0.8	6
31	Using surface-plasmon polariton at the GaP-Au interface in order to detect chemical species in high-refractive-index media. Optics Communications, 2015, 341, 64-68.	2.1	13
32	Selective-area growth of GaN on non- and semi-polar bulk GaN substrates. Japanese Journal of Applied Physics, 2014, 53, 05FL04.	1.5	8
33	Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration. Journal of Applied Physics, 2014, 115, .	2.5	21
34	Binding energy of localized biexcitons in AlGaN-based quantum wells. Applied Physics Express, 2014, 7, 122101.	2.4	8
35	Anisotropic crystalline morphology of epitaxial thick AlN films grown on triangular-striped AlN/sapphire template. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 731-735.	1.8	3
36	Transient photoluminescence of aluminum-rich (Al,Ga)N low-dimensional structures. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 765-768.	1.8	9

#	Article	IF	CITATIONS
37	MOVPE growth of GaN on Si substrate with 3C-SiC buffer layer. Japanese Journal of Applied Physics, 2014, 53, 05FL09.	1.5	20
38	High-quality AlN growth on 6H-SiC substrate using three dimensional nucleation by low-pressure hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 2014, 53, 05FL03.	1.5	26
39	Si concentration dependence of structural inhomogeneities in Si-doped Al <i>x</i> Galâ^' <i>x</i> N/Al <i>y</i> Galâ^' <i>y</i> N multiple quantum well structures (<i>x</i> = 0.6) a its relationship with internal quantum efficiency. Journal of Applied Physics, 2014, 116, .	n2d5	5
40	Study on the effects of AlN interlayer in thick GaN grown on 3C-SiC/Si substrates. Journal of Crystal Growth, 2013, 370, 254-258.	1.5	4
41	Effects of Si doping in high-quality AlN grown by MOVPE on trench-patterned template. Journal of Crystal Growth, 2013, 370, 74-77.	1.5	5
42	Cathodoluminescence Study of Optical Inhomogeneity in Si-Doped AlGaN Epitaxial Layers Grown by Low-Pressure Metalorganic Vapor-Phase Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 08JL07.	1.5	6
43	Selective Area Growth of Semipolar (202̄1) and (202̄1̄) GaN Substrates by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 08JC06.	1.5	5
44	AlN Grown ona- andn-Plane Sapphire Substrates by Low-Pressure Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 08JB31.	1.5	13
45	Realization of Maskless Epitaxial Lateral Overgrowth of GaN on 3C-SiC/Si Substrates. Japanese Journal of Applied Physics, 2013, 52, 08JB07.	1.5	6
46	Growth and Characterization of AlGaN Multiple Quantum Wells for Electron-Beam Target for Deep-Ultraviolet Light Sources. Japanese Journal of Applied Physics, 2013, 52, 01AF03.	1.5	28
47	Fabrication of Binary Diffractive Lenses and the Application to LED Lighting for Controlling Luminosity Distribution. Optics and Photonics Journal, 2013, 03, 67-73.	0.4	13
48	The Application of Local Traditional Crafts to a New LED Lighting System : The Development of an LED Lighting System with Human Sensitivity Using Ise Paper Stencils as Lamp Shades(<special) 0="" c<="" etqq0="" rgbt="" td="" tj=""><td>Verlock I 0.1</td><td>10₀Tf 50 302</td></special)>	Verlock I 0.1	10 ₀ Tf 50 302
49	Journal of the Illuminating Engineering Institute of Japan (Shomei Gakkai Shi), 2013, 97, 381-385. Photoluminescence due to Inelastic Biexciton Scattering from an Al\$_{0.61}\$Ga\$_{0.39}\$N Ternary Alloy Epitaxial Layer at Room Temperature. Applied Physics Express, 2012, 5, 072401.	2.4	8
50	Dependence of internal quantum efficiency on doping region and Si concentration in Al-rich AlGaN quantum wells. Applied Physics Letters, 2012, 101, 042110.	3.3	45
51	Correlation between in-plane strain and optical polarization of Si-doped AlGaN epitaxial layers as a function of Al content and Si concentration. Journal of Applied Physics, 2012, 112, 033512.	2.5	8
52	AlN homoepitaxial growth on sublimation-AlN substrate by low-pressure HVPE. Journal of Crystal Growth, 2012, 350, 69-71.	1.5	24
53	Orientation dependence of polarized Raman spectroscopy for nonpolar, semi-polar, and polar bulk GaN substrates. Applied Physics Letters, 2012, 100, .	3.3	13
54	Effects of carrier gas ratio and growth temperature on MOVPE growth of AlN. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 499-502.	0.8	14

#	Article	IF	CITATIONS
55	Fabrication of crackâ€free thick AlN film on aâ€plane sapphire by lowâ€pressure HVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 576-579.	0.8	7
56	Raman Scattering Spectroscopy of Residual Stresses in Epitaxial AlN Films. Applied Physics Express, 2011, 4, 031001.	2.4	66
57	Observation of longitudinal-optic-phonon-plasmon-coupled mode in n-type AlGaN alloy films. Applied Physics Letters, 2011, 99, 251904.	3.3	9
58	HVPE growth of câ€plane AlN on aâ€plane sapphire using nitridation layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 470-472.	0.8	6
59	HVPE growth of AlN on trench―patterned 6Hâ€6iC substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 467-469.	0.8	11
60	Recombination dynamics of localized excitons in AlxGa1-xN (0.37 <x<0.81) alloys.="" physica="" status<br="" ternary="">Solidi C: Current Topics in Solid State Physics, 2011, 8, 2133-2135.</x<0.81)>	0.8	6
61	Evidence for moving of threading dislocations during the VPE growth in GaN thin layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1487-1490.	0.8	5
62	HVPE growth of thick AlN on trench-patterned substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1483-1486.	0.8	8
63	Stress analysis of aâ€plane GaN grown on râ€plane sapphire substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2066-2068.	0.8	1
64	Control of AlN buffer/sapphire substrate interface for AlN growth. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2069-2071.	0.8	16
65	Huge binding energy of localized biexcitons in Al-rich AlxGa1â^'xN ternary alloys. Applied Physics Letters, 2011, 98, 081907.	3.3	8
66	Silicon concentration dependence of optical polarization in AlGaN epitaxial layers. Applied Physics Letters, 2011, 98, .	3.3	14
67	Fabrication of Deep-Ultraviolet-Light-Source Tube Using Si-Doped AlGaN. Applied Physics Express, 2011, 4, 042103.	2.4	58
68	Growth of High-Quality Si-Doped AlGaN by Low-Pressure Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2011, 50, 095502.	1.5	23
69	Growth of High-Quality Si-Doped AlGaN by Low-Pressure Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2011, 50, 095502.	1.5	10
70	In-plane structural anisotropy and polarized Raman-active mode studies of nonpolar AlN grown on 6H-SiC by low-pressure hydride vapor phase epitaxy. Journal of Crystal Growth, 2010, 312, 490-494.	1.5	10
71	Formation mechanism of Al-depleted bands in MOVPE-AlGaN layer on GaN template with trenches. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2036-2039.	0.8	0
72	a -plane AlN and AlGaN growth on r -plane sapphire by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2107-2110.	0.8	8

#	Article	IF	CITATIONS
73	Variation of Surface Potentials of Si-Doped Al _{<i>x</i>} Ga _{1-<i>x</i>} N (0) Tj ETQq1 1 0.73	84314 rgB 2.4	T /Overlock 6
	Physics Express, 2010, 3, 021004.		
74	Deep Electronic Levels of Al _x Ga _{1-x} N with a Wide Range of Al Composition Grown by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2010, 49, 101001.	1.5	11
75	Study of High-Quality and Crack-Free GaN Growth on 3C-SiC/Separation by Implanted Oxygen (111). Japanese Journal of Applied Physics, 2010, 49, 041001.	1.5	6
76	In-plane electric field induced by polarization and lateral photovoltaic effect in a-plane GaN. Applied Physics Letters, 2009, 94, .	3.3	8
77	Growth of High Quality c-plane AlN on a-plane Sapphire. Materials Research Society Symposia Proceedings, 2009, 1202, 55.	0.1	1
78	Facet-control in selective area growth (SAG) of a-plane GaN by MOVPE. Materials Research Society Symposia Proceedings, 2009, 1202, 98.	0.1	0
79	Fabrication of a binary diffractive lens for controlling the luminous intensity distribution of LED light. Optical Review, 2009, 16, 455-457.	2.0	8
80	Effects of initial conditions and growth temperature on the properties of nonpolar <i>a</i> â€plane AlN grown by LPâ€HVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S478.	0.8	6
81	Structural and electrical properties of Si-doped a-plane GaN grown on r-plane sapphire by MOVPE. Journal of Crystal Growth, 2009, 311, 2899-2902.	1.5	18
82	Photoluminescence study of Si-doped a-plane GaN grown by MOVPE. Journal of Crystal Growth, 2009, 311, 2906-2909.	1.5	20
83	Optical properties of MOVPE-grown a-plane GaN and AlGaN. Journal of Crystal Growth, 2009, 311, 2903-2905.	1.5	9
84	Effects of initial stages on the crystal quality of nonpolar a-plane AlN on r-plane sapphire by low-pressure HVPE. Journal of Crystal Growth, 2009, 311, 3801-3805.	1.5	23
85	Influence of off-cut angle of r-plane sapphire on the crystal quality of nonpolar a-plane AlN by LP-HVPE. Journal of Crystal Growth, 2009, 311, 4473-4477.	1.5	22
86	Effects of Substrate Plane on the Growth of High Quality AlN by Hydride Vapor Phase Epitaxy. Applied Physics Express, 2009, 2, 111004.	2.4	16
87	Nitridating r-plane sapphire to improve crystal qualities and surface morphologies of a-plane GaN grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2009, 95, .	3.3	20
88	Thermal analysis of GaN powder formation via reaction of gallium ethylenediamine tetraacetic acid complexes with ammonia. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1522-1524.	0.8	1
89	Improved surface morphology of flow-modulated MOVPE grown AlN on sapphire using thin medium-temperature AlN buffer layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1818-1821.	0.8	1
90	Improved optical properties of AlGaN using periodic structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1822-1824.	0.8	1

#	Article	IF	CITATIONS
91	Optical Properties of Semiconductors with Nanotips Structure. , 2008, , .		0
92	Optical Characterization of Japanese Papers for Application in the LED Lighting System with Human Sensitivity. Journal of Light and Visual Environment, 2008, 32, 218-221.	0.2	1
93	Selective Area Growth of III-Nitride and Their Application for Emitting Devices. Journal of Light and Visual Environment, 2008, 32, 177-182.	0.2	0
94	Suppression of Crack Generation Using High-Compressive-Strain AlN/Sapphire Template for Hydride Vapor Phase Epitaxy of Thick AlN Film. Japanese Journal of Applied Physics, 2007, 46, L552-L555.	1.5	16
95	Fundamental Properties of Wide Bandgap Semiconductors. , 2007, , 25-96.		Ο
96	Influence of growth conditions on Al incorporation to AlxGa1â^'xN (x>0.4) grown by MOVPE. Journal of Crystal Growth, 2007, 298, 372-374.	1.5	14
97	Influence of growth interruption and Si doping on the structural and optical properties of AlxGaN/AlN (x>0.5) multiple quantum wells. Journal of Crystal Growth, 2007, 298, 500-503.	1.5	15
98	Structural and optical properties of Si-doped AlGaN/AlN multiple quantum wells grown by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2494-2497.	0.8	0
99	Blue emission from InGaN/GaN hexagonal pyramid structures. Superlattices and Microstructures, 2007, 41, 341-346.	3.1	9
100	Enhanced emission efficiency of InGaN films with Si doping. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1944-1948.	0.8	3
101	Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1479-1482.	0.8	5
102	n-type conductivity control of AlGaN with high Al mole fraction. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1435-1438.	0.8	4
103	Enhancement of blue emission from Mg-doped GaN activated at low temperature in O2/N2 mixture. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2750-2753.	0.8	2
104	Influence of Si doping on the optical and structural properties of InGaN films. Journal of Crystal Growth, 2006, 290, 374-378.	1.5	5
105	Growth control of carbon nanotubes by plasma-enhanced chemical vapor deposition and reactive ion etching. Vacuum, 2006, 80, 798-801.	3.5	7
106	Growth characteristics of carbon nanotubes on nanotip-formed substrate. Journal of Vacuum Science & Technology B, 2006, 24, 1004.	1.3	1
107	Growth of Thick AlN Layer by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2005, 44, L505-L507.	1.5	37
108	Fabrication and characterization of UV Schottky detectors by using a freestanding GaN substrate. Materials Research Society Symposia Proceedings, 2004, 831, 359.	0.1	0

#	Article	IF	CITATIONS
109	Reduction of dislocation density in AlGaN with high AlN molar fraction by using a rugged AlN epilayer. Materials Research Society Symposia Proceedings, 2004, 831, 353.	0.1	2
110	Epitaxial lateral overgrowth of GaN on selected-area Si(111) substrate with nitrided Si mask. Journal of Crystal Growth, 2003, 248, 573-577.	1.5	10
111	Characterization of GaN based Schottky UV detectors in the vacuum UV (VUV) and the soft X-ray (SX) region (10–100 nm). Physica Status Solidi A, 2003, 200, 147-150.	1.7	7
112	MOVPE growth and n-type conductivity control of high-quality Si-doped Al0.5Ga0.5N using epitaxial AlN as an underlying layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2128-2131.	0.8	1
113	Characterization of III-nitride Based Schottky UV Detectors with Wide Detectable Wavelength Range (360–10 nm) using Synchrotron Radiation. Materials Research Society Symposia Proceedings, 2003, 798, 683.	0.1	0
114	Metalorganic Vapor Phase Epitaxy Growth and Study of Stress in AlGaN Using Epitaxial AlN as Underlying Layer. Japanese Journal of Applied Physics, 2003, 42, L572-L574.	1.5	11
115	Antireflection Effect of Self-Organized GaN Nanotip Structure from Ultraviolet to Visible Region. Japanese Journal of Applied Physics, 2002, 41, L1134-L1136.	1.5	13
116	Effects of buffer layers and advanced technologies on heteroepitaxy of GaN. , 2001, , 210-232.		2
117	Epitaxial lateral overgrowth techniques used in group III nitride epitaxy. Journal of Physics Condensed Matter, 2001, 13, 6961-6975.	1.8	86
118	Effects of the Schottky electrode structure in GaN based UV-VUV (50-360 nm) photodetector. Materials Research Society Symposia Proceedings, 2001, 693, 230.	0.1	0
119	Effect of Ge in Cl2 Plasma for Reactive Ion Etching of GaN. Materials Research Society Symposia Proceedings, 2001, 693, 174.	0.1	1
120	New buffer layer technique using underlying epitaxial AlN films for high-quality GaN growth. Materials Research Society Symposia Proceedings, 2001, 693, 501.	0.1	0
121	Characterization of high-quality epitaxial AlN films grown by MOVPE. Materials Research Society Symposia Proceedings, 2001, 693, 774.	0.1	5
122	Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth. Japanese Journal of Applied Physics, 2001, 40, L309-L312.	1.5	34
123	Characterization of GaN-Based Schottky Barrier Ultraviolet (UV) Detectors in the UV and Vacuum Ultraviolet (VUV) Region Using Synchrotron Radiation. Japanese Journal of Applied Physics, 2001, 40, L368-L370.	1.5	16
124	Formation of GaN Self-Organized Nanotips by Reactive Ion Etching. Japanese Journal of Applied Physics, 2001, 40, L1301-L1304.	1.5	59
125	In Situ Monitoring of GaN Reactive Ion Etching by Optical Emission Spectroscopy. Japanese Journal of Applied Physics, 2001, 40, L313-L315.	1.5	8
126	Sharp band edge photoluminescence of high-purity CuInS2 single crystals. Applied Physics Letters, 2001, 78, 742-744.	3.3	75

#	Article	IF	CITATIONS
127	TEM Analysis of Threading Dislocations in ELO-GaN Grown with Controlled Facet Planes. Materials Research Society Symposia Proceedings, 2000, 639, 11591.	0.1	4
128	Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). Journal of Crystal Growth, 2000, 221, 316-326.	1.5	396
129	Epitaxial Growth and Dislocation Formation in Crystals of Nitride Semiconductors. Hyomen Kagaku, 2000, 21, 155-161.	0.0	Ο
130	Fabrication of GaN with Buried Tungsten (W) Structures Using Epitaxial Lateral Overgrowth (ELO) via LP-MOVPE. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 62-68.	1.0	1
131	Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods. Journal of Electron Microscopy, 2000, 49, 331-338.	0.9	11
132	Review of Facet Controlled Epitaxial Lateral Overgrowth (FACELO) of GaN via Low Pressure Vapor Phase Epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 841.	0.1	1
133	Defect structure in selective area growth GaN pyramid on (111)Si substrate. Applied Physics Letters, 2000, 76, 2701-2703.	3.3	87
134	Selective Area Growth (SAG) and Epitaxial Lateral Overgrowth (ELO) of GaN using Tungsten Mask. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 441-446.	1.0	2
135	Hydrogen and Nitrogen Ambient Effects on Epitaxial Lateral Overgrowth (ELO) of GaN VIA Metalorganic Vapor-Phase Epitaxy (Movpe). MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 118-123.	1.0	3
136	Optical and Crystalline Properties of Epitaxial-Lateral-Overgrown-GaN Using Tungsten Mask by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L356-L359.	1.5	60
137	Crystal Orientation Fluctuation of Epitaxial-Lateral-Overgrown GaN with W Mask and SiO2 Mask Observed by Transmission Electron Diffraction and X-Ray Rocking Curves. Japanese Journal of Applied Physics, 1999, 38, L1299-L1302.	1.5	20
138	Selective area growth and epitaxial lateral overgrowth of GaN by metalorganic vapor phase epitaxy and hydride vapor phase epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 104-111.	3.5	19
139	Effects of Reactor Pressure on Epitaxial Lateral Overgrowth of GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1000-L1002.	1.5	95
140	Fabrication of GaN with Buried Tungsten (W) Structures Using Epitaxial Lateral Overgrowth (ELO) via LP-MOVPE. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	1
141	The formation of crystalline defects and crystal growth mechanism in InxGa1â^'xN/GaN heterostructure grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1998, 189-190, 24-28.	1.5	58
142	Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth. Journal of Crystal Growth, 1998, 189-190, 67-71.	1.5	42
143	Sub-micron fine structure of GaN by metalorganic vapor phase epitaxy (MOVPE) selective area growth (SAG) and buried structure by epitaxial lateral overgrowth (ELO). Journal of Crystal Growth, 1998, 189-190, 78-82.	1.5	20
144	Selective Area Growth of GaN Using Tungsten Mask by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1998, 37, L845-L848.	1.5	36

#	Article	IF	CITATIONS
145	Selective Area Growth of GaN on Si Substrate Using SiO 2 Mask by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1998, 37, L966-L969.	1.5	63
146	Hydrogen and Nitrogen Ambient Effects on Epitaxial Lateral Overgrowth (ELO) of GaN Via Metalorganic Vapor-Phase Epitaxy (MOVPE). Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	5
147	Selective Area Growth (SAG) and Epitaxial Lateral Overgrowth (Elo) of GaN Using Tungsten Mask. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	2
148	Metalorganic Vapor Phase Epitaxy of Thick InGaN on Sapphire Substrate. Japanese Journal of Applied Physics, 1997, 36, 3381-3384.	1.5	51
149	MOVPE growth of thick homogeneous InGaN directly on sapphire substrate using AlN buffer layer. Solid-State Electronics, 1997, 41, 145-147.	1.4	39
150	A study on barrier height of AuAlxGa1 ⴒ xN Schottky diodes in the range 0 ≤ ≤0.20. Solid-State Electronics, 1997, 41, 287-294.	1.4	36
151	The Composition Pulling Effect in InGaN Growth on the GaN and AlGaN Epitaxial Layers Grown by MOVPE. Materials Research Society Symposia Proceedings, 1996, 449, 89.	0.1	43
152	Raman scattering study of the immiscible region in InGaAsP grown by LPE on (100) and (111) GaAs. Journal of Electronic Materials, 1996, 25, 695-699.	2.2	1
153	Facets Formation Mechanism of GaN Hexagonal Pyramids on Dot-Patterns via Selective MOVPE. Materials Research Society Symposia Proceedings, 1995, 395, 267.	0.1	17
154	Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1995, 34, L1184-L1186.	1.5	171
155	Selective growth of wurtzite GaN and AlxGa1â^'xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1994, 144, 133-140.	1.5	312
156	Metalorganic vapor phase epitaxy growth of (InxGa1-xN/GaN)n layered structures and reduction of indium droplets. Journal of Crystal Growth, 1994, 145, 209-213.	1.5	57
157	Raman Scattering of InGaAsP Lattice-Matched to GaAs in the Region of Immiscibility. Japanese Journal of Applied Physics, 1993, 32, 2718-2721.	1.5	13
158	Relaxation Mechanism of Thermal Stresses in the Heterostructure of GaN Grown on Sapphire by Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1993, 32, 1528-1533.	1.5	214
159	Relaxation Process of the Thermal Strain in the GaN/α-Al2O3Heterostructure and Determination of the Intrinsic Lattice Constants of GaN Free from the Strain. Japanese Journal of Applied Physics, 1992, 31, L1454-L1456.	1.5	259
160	MOVPE growth of GaN on a misoriented sapphire substrate. Journal of Crystal Growth, 1991, 107, 509-512.	1.5	53
161	Growth of InGaP epitaxial layers by liquid phase electro-epitaxy. Journal of Crystal Growth, 1991, 115, 304-308.	1.5	9
162	Cross-sectional TEM study of microstructures in MOVPE GaN films grown on α-Al2O3 with a buffer layer of AlN. Journal of Crystal Growth, 1991, 115, 381-387.	1.5	45

KAZUMASA HIRAMATSU

#	Article	IF	CITATIONS
163	Growth of Si-doped AlxGa1–xN on (0001) sapphire substrate by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1991, 115, 648-651.	1.5	75
164	Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. Journal of Crystal Growth, 1991, 115, 634-638.	1.5	188
165	Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. Journal of Luminescence, 1991, 48-49, 666-670.	3.1	253
166	Growth of single crystal GaN substrate using hydride vapor phase epitaxy. Journal of Crystal Growth, 1990, 99, 381-384.	1,5	176
167	Preparation of AlxGa1-xN/GaN heterostructure by MOVPE. Journal of Crystal Growth, 1990, 104, 533-538.	1.5	93
168	Cathodoluminescence of MOVPE-grown GaN layer on α-Al2O3. Journal of Crystal Growth, 1990, 99, 375-380.	1.5	12
169	Growth and Luminescence Properties of Mgâ€Đoped GaN Prepared by MOVPE. Journal of the Electrochemical Society, 1990, 137, 1639-1641.	2.9	209
170	Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1â^'xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE. Journal of Crystal Growth, 1989, 98, 209-219.	1.5	689
171	Electron microscope study of modulated structures and heterointerfaces in LPE-grown GalnAsP layers lattice-matched on GaAs. Journal of Crystal Growth, 1989, 98, 82-89.	1.5	4
172	LPE growth of InGaP/InGaAsP multiple thin layers on (111)A GaAs substrates. Journal of Crystal Growth, 1989, 98, 653-658.	1.5	6
173	P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics, 1989, 28, L2112-L2114.	1.5	1,754
174	A verification of immiscibility in InGaAsP quaternary alloys. Journal of Crystal Growth, 1988, 92, 311-315.	1.5	4
175	Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate. Thin Solid Films, 1988, 163, 415-420.	1.8	263
176	Effect of lattice mismatch between epitaxial layer and substrate on immiscibility of InGaAsP/GaAs LPE layers. Journal of Crystal Growth, 1988, 87, 446-452.	1.5	10
177	Electron beam effects on blue luminescence of zinc-doped GaN. Journal of Luminescence, 1988, 40-41, 121-122.	3.1	84
178	Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (\$11) Tj ETQqO O	0 rgBT /C	verlock 10 Tf
179	The initial stage of LPE growth of InGaAsP on GaAs in the region of immiscibility. Journal of Crystal Growth, 1986, 79, 978-983.	1.5	33

180Analysis of Compositional Variation at Initial Transient Time in LPE Growth of InGaAsP/GaAs System.1.510180Japanese Journal of Applied Physics, 1985, 24, 1030-1035.1.510

#	Article	IF	CITATIONS
181	Characterization of Interface Instability in InGaAsP LPE Growth on GaAs by Fourier Analysis. Japanese Journal of Applied Physics, 1985, 24, 822-827.	1.5	5
182	LPE Growth and Surface Morphology of InxGa1-xAsyP1-y(yâ‰ 9 .01) on (100) GaAs. Japanese Journal of Applied Physics, 1984, 23, 68-73.	1.5	16
183	Local Strain Distribution in AlN Thick Films Analyzed by X-Ray Microdiffraction. Materials Science Forum, 0, 783-786, 2016-2021.	0.3	0