David Waller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11167607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WeaVR: a self-contained and wearable immersive virtual environment simulation system. Behavior Research Methods, 2015, 47, 296-307.	4.0	21
2	The Function, Structure, Form, and Content of Environmental Knowledge. Psychology of Learning and Motivation - Advances in Research and Theory, 2014, , 267-301.	1.1	2
3	Toward a definition of intrinsic axes: The effect of orthogonality and symmetry on the preferred direction of spatial memory Journal of Experimental Psychology: Learning Memory and Cognition, 2013, 39, 1914-1929.	0.9	15
4	Sensory Contributions to Spatial Knowledge of Real and Virtual Environments. , 2013, , 3-26.		22
5	A Century of Imagery Research: Reflections on Cheves Perky's Contribution to Our Understanding of Mental Imagery. American Journal of Psychology, 2012, 125, 291-305.	0.3	15
6	View combination in recognition of 3â€ <scp>D</scp> virtual reality layouts. PsyCh Journal, 2012, 1, 82-89.	1.1	0
7	Going anywhere anywhere: Creating a low cost portable immersive VE system. , 2012, , .		8
8	A computational model of the allocentric and egocentric spatial memory by means of virtual agents, or how simple virtual agents can help to build complex computational models. Cognitive Systems Research, 2012, 17-18, 1-24.	2.7	4
9	View combination: A generalization mechanism for visual recognition. Cognition, 2011, 119, 229-241.	2.2	6
10	Redirected walking to explore virtual environments. ACM Transactions on Applied Perception, 2011, 8, 1-22.	1.9	56
11	Micro- and macroreference frames: Specifying the relations between spatial categories in memory Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 938-957.	0.9	43
12	Learning scenes from multiple views: Novel views can be recognized more efficiently than learned views. Memory and Cognition, 2009, 37, 90-99.	1.6	13
13	View combination in scene recognition. Memory and Cognition, 2008, 36, 467-478.	1.6	23
14	Intrinsic array structure is neither necessary nor sufficient for nonegocentric coding of spatial layouts. Psychonomic Bulletin and Review, 2008, 15, 1015-1021.	2.8	48
15	Isolating observer-based reference directions in human spatial memory: Head, body, and the self-to-array axis. Cognition, 2008, 106, 157-183.	2.2	22
16	Correcting distance estimates by interacting with immersive virtual environments: Effects of task and available sensory information Journal of Experimental Psychology: Applied, 2008, 14, 61-72.	1.2	92
17	Interaction With an Immersive Virtual Environment Corrects Users' Distance Estimates. Human Factors, 2007, 49, 507-517.	3.5	98
18	The HIVE: A huge immersive virtual environment for research in spatial cognition. Behavior Research Methods, 2007, 39, 835-843.	4.0	53

DAVID WALLER

#	Article	IF	CITATIONS
19	Landmarks as beacons and associative cues: Their role in route learning. Memory and Cognition, 2007, 35, 910-924.	1.6	118
20	The role of body-based sensory information in the acquisition of enduring spatial representations. Psychological Research, 2007, 71, 322-332.	1.7	55
21	Egocentric and nonegocentric coding in memory for spatial layout: Evidence from scene recognition. Memory and Cognition, 2006, 34, 491-504.	1.6	21
22	The Borderline of Science: On the Value of Factor Analysis for Understanding Presence. Presence: Teleoperators and Virtual Environments, 2006, 15, 235-244.	0.6	10
23	Transient and enduring spatial representations under disorientation and self-rotation Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 867-882.	0.9	150
24	Lack of set size effects in spatial updating: Evidence for offline updating Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 854-866.	0.9	31
25	The WALKABOUT: Using virtual environments to assess large-scale spatial abilities. Computers in Human Behavior, 2005, 21, 243-253.	8.5	23
26	The effect of feedback training on distance estimation in virtual environments. Applied Cognitive Psychology, 2005, 19, 1089-1108.	1.6	87
27	Using virtual environments to assess directional knowledge. Journal of Environmental Psychology, 2004, 24, 105-116.	5.1	45
28	Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin and Review, 2004, 11, 157-163.	2.8	116
29	Inertial cues do not enhance knowledge of environmental layout. Psychonomic Bulletin and Review, 2003, 10, 987-993.	2.8	43
30	Scaling techniques for modeling directional knowledge. Behavior Research Methods, 2003, 35, 285-293.	1.3	10
31	Orientation specificity and spatial updating of memories for layouts Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 1051-1063.	0.9	103
32	Orientation specificity and spatial updating of memories for layouts Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 1051-1063.	0.9	76
33	Spatial Representations of Virtual Mazes: The Role of Visual Fidelity and Individual Differences. Human Factors, 2001, 43, 147-158.	3.5	76
34	Individual differences in spatial learning from computer-simulated environments Journal of Experimental Psychology: Applied, 2000, 6, 307-321.	1.2	119
35	Place learning in humans: The role of distance and direction information. Spatial Cognition and Computation, 2000, 2, 333-354.	1.2	59
36	Factors Affecting the Perception of Interobject Distances in Virtual Environments. Presence: Teleoperators and Virtual Environments, 1999, 8, 657-670.	0.6	51

#	Article	IF	CITATIONS
37	The Transfer of Spatial Knowledge in Virtual Environment Training. Presence: Teleoperators and Virtual Environments, 1998, 7, 129-143.	0.6	358
38	A desktop virtual environment trainer provides superior retention of a spatial assembly skill. , 1998, , .		10