
Nian Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11167566/publications.pdf Version: 2024-02-01

NIAN CONC

#	Article	IF	CITATIONS
1	Activation of Spinal Glucagon-Like Peptide-1 Receptors Specifically Suppresses Pain Hypersensitivity. Journal of Neuroscience, 2014, 34, 5322-5334.	3.6	98
2	Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity. Neuron, 2016, 92, 160-173.	8.1	91
3	Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain, 2013, 154, 2452-2462.	4.2	86
4	Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism: Clinical and Experimental, 2016, 65, 463-474.	3.4	67
5	Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology, 2014, 84, 31-45.	4.1	61
6	The Antinociceptive Properties of the Corydalis yanhusuo Extract. PLoS ONE, 2016, 11, e0162875.	2.5	57
7	A Series of d-Amino Acid Oxidase Inhibitors Specifically Prevents and Reverses Formalin-Induced Tonic Pain in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 282-293.	2.5	55
8	Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata , reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology, 2016, 101, 98-109.	4.1	54
9	The nonâ€peptide <scp>GLP</scp> â€1 receptor agonist <scp>WB</scp> 4â€24 blocks inflammatory nociception by stimulating <scp>β</scp> â€endorphin release from spinal microglia. British Journal of Pharmacology, 2015, 172, 64-79.	5.4	51
10	Siteâ€specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. British Journal of Pharmacology, 2011, 163, 399-412.	5.4	50
11	<scp>d</scp> â€Amino acid oxidaseâ€mediated increase in spinal hydrogen peroxide is mainly responsible for formalinâ€induced tonic pain. British Journal of Pharmacology, 2012, 165, 1941-1955.	5.4	46
12	Central Mechanisms Mediating Thrombospondin-4-induced Pain States. Journal of Biological Chemistry, 2016, 291, 13335-13348.	3.4	46
13	<i>Lamiophlomis rotata</i> , an Orally Available Tibetan Herbal Painkiller, Specifically Reduces Pain Hypersensitivity States through the Activation of Spinal Glucagon-like Peptide-1 Receptors. Anesthesiology, 2014, 121, 835-851.	2.5	46
14	Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition. Scientific Reports, 2017, 7, 43137.	3.3	35
15	Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/β-endorphin pathway. Pharmacological Research, 2015, 102, 276-285.	7.1	32
16	Morroniside, a secoiridoid glycoside from <scp><i>Cornus officinalis</i></scp> <i>,</i> attenuates neuropathic pain by activation of spinal glucagonâ€like peptideâ€l receptors. British Journal of Pharmacology, 2017, 174, 580-590.	5.4	32
17	Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Frontiers in Pharmacology, 2016, 7, 367.	3.5	30
18	Identification of a Novel Spinal Dorsal Horn Astroglial <scp>d</scp> -Amino Acid Oxidase–Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology, 2014, 120, 962-975.	2.5	29

Nian Gong

#	Article	IF	CITATIONS
19	Gabapentin prevents synaptogenesis between sensory and spinal cord neurons induced by thrombospondinâ€4 acting on preâ€synaptic Ca _v α ₂ δ ₁ subunits and involving Tâ€type Ca ²⁺ channels. British Journal of Pharmacology, 2018, 175, 2348-2361.	5.4	28
20	Interactions of the potent d-amino acid oxidase inhibitor CBIO with morphine in pain and tolerance to analgesia. Neuropharmacology, 2012, 63, 460-468.	4.1	27
21	Injuryâ€induced maladaptation and dysregulation of calcium channel α ₂ δ subunit proteins and its contribution to neuropathic pain development. British Journal of Pharmacology, 2018, 175, 2231-2243.	5.4	25
22	Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacology Biochemistry and Behavior, 2013, 111, 30-36.	2.9	24
23	Biological Implications of Oxidation and Unidirectional Chiral Inversion of D-amino Acids. Current Drug Metabolism, 2012, 13, 321-331.	1.2	21
24	Pain Assessment Using the Rat and Mouse Formalin Tests. Bio-protocol, 2014, 4, .	0.4	19
25	Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 131-138.	2.8	15
26	The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. Journal of Biological Chemistry, 2018, 293, 16453-16463.	3.4	11
27	Functional Reorganization of Local Circuit Connectivity in Superficial Spinal Dorsal Horn with Neuropathic Pain States. ENeuro, 2019, 6, ENEURO.0272-19.2019.	1.9	10
28	Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor. European Journal of Medicinal Chemistry, 2016, 117, 19-32.	5.5	5
29	Indispensable but Insufficient Role of Renal D-Amino Acid Oxidase in Chiral Inversion of NG-Nitro-D-arginine. Chemistry and Biodiversity, 2010, 7, 1413-1423.	2.1	3
30	Mouse strain specificity of DAAO inhibitorsâ€nediated antinociception. Pharmacology Research and Perspectives, 2021, 9, e00727.	2.4	3
31	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	2
32	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	0