James B Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116615/publications.pdf

Version: 2024-02-01

43 papers 3,696 citations

201674 27 h-index 254184 43 g-index

48 all docs 48 docs citations

48 times ranked

3378 citing authors

#	Article	IF	CITATIONS
1	Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics, 2019, 20, 351.	2.8	49
2	Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nature Communications, 2019, 10, 923.	12.8	62
3	Armillaria. Current Biology, 2018, 28, R297-R298.	3.9	29
4	Clonal evolution and genome stability in a 2500-year-old fungal individual. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182233.	2.6	39
5	Persistence of Resident and Transplanted Genotypes of the Undomesticated Yeast Saccharomyces paradoxus in Forest Soil. MSphere, 2018, 3, .	2.9	9
6	Population genomics reveals structure at the individual, hostâ€tree scale and persistence of genotypic variants of the undomesticated yeast ⟨i⟩ Saccharomyces paradoxus⟨i⟩ in a natural woodland. Molecular Ecology, 2017, 26, 995-1007.	3.9	21
7	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	7.8	145
8	Fungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination. MSphere, $2017, 2, .$	2.9	24
9	A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genetics, 2015, 11, e1005407.	3.5	22
10	The Underlying Structure of Adaptation under Strong Selection in 12 Experimental Yeast Populations. Eukaryotic Cell, 2014, 13, 1200-1206.	3.4	16
11	Genomewide mutation dynamic within a long-lived individual of <i>Armillaria gallica</i> . Mycologia, 2014, 106, 642-648.	1.9	28
12	Cellular Effects and Epistasis among Three Determinants of Adaptation in Experimental Populations of Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 1348-1356.	3.4	15
13	Determinants of Divergent Adaptation and Dobzhansky-Muller Interaction in Experimental Yeast Populations. Current Biology, 2010, 20, 1383-1388.	3.9	68
14	Gene Expression and Evolution of Antifungal Drug Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 1931-1936.	3.2	22
15	Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance. PLoS Genetics, 2009, 5, e1000705.	3.5	293
16	Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature, 2007, 447, 585-588.	27.8	185
17	Antagonism between Two Mechanisms of Antifungal Drug Resistance. Eukaryotic Cell, 2006, 5, 1243-1251.	3.4	17
18	Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nature Reviews Microbiology, 2005, 3, 547-556.	28.6	298

#	Article	IF	CITATIONS
19	Dikaryons of the Basidiomycete FungusSchizophyllum commune. Genetics, 2004, 167, 1663-1675.	2.9	82
20	Haploidy, Diploidy and Evolution of Antifungal Drug Resistance in Saccharomyces cerevisiae. Genetics, 2004, 168, 1915-1923.	2.9	80
21	Mode of Selection and Experimental Evolution of Antifungal Drug Resistance in <i>Saccharomyces cerevisiae</i> . Genetics, 2003, 163, 1287-1298.	2.9	134
22	Population genomics of drug resistance in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9284-9289.	7.1	133
23	Multilocus Genotyping Indicates that the Ability To Invade the Bloodstream Is Widespread among Candida albicans Isolates. Journal of Clinical Microbiology, 2001, 39, 1657-1660.	3.9	32
24	Infrequent Genetic Exchange and Recombination in the Mitochondrial Genome of Candida albicans. Journal of Bacteriology, 2001, 183, 865-872.	2.2	91
25	Genomic stability of two individuals of Armillaria gallica. Mycologia, 2000, 92, 894-899.	1.9	14
26	Genomic Stability of Two Individuals of Armillaria gallica. Mycologia, 2000, 92, 894.	1.9	10
27	PATTERNS OF DESCENT IN CLONAL LINEAGES AND THEIR MULTILOCUS FINGERPRINTS ARE RESOLVED WITH COMBINED GENE GENEALOGIES. Evolution; International Journal of Organic Evolution, 1999, 53, 11-21.	2.3	82
28	Mitochondrial DNA variation in natural populations of the mushroomAgaricus bisporus. Molecular Ecology, 1998, 7, 19-33.	3.9	32
29	A comparison of different methods for the identification of genets of Armillariaspp New Phytologist, 1996, 133, 333-343.	7.3	54
30	Molecular Phylogeny of Northern Hemisphere Species of <i>Armillaria </i> . Mycologia, 1992, 84, 505-516.	1.9	215
31	Strategies for the Efficient Recovery of Agaricus Bisporus Homokaryons. Mycologia, 1992, 84, 575-579.	1.9	27
32	The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 1992, 356, 428-431.	27.8	612
33	VARIATION IN RIBOSOMAL DNA AMONG BIOLOGICAL SPECIES OF <i>ARMILLARIA</i> , A GENUS OF ROOTâ€INFECTING FUNGI. Evolution; International Journal of Organic Evolution, 1989, 43, 1652-1662.	2.3	71
34	Physical mapping of the mitochondrial genome of the cultivated mushroom Agaricus brunnescens (=) Tj ETQq0	0 O ₁ rgBT /0	Overlock 10 Ti
35	Restriction Fragment Polymorphisms in Biological Species of Armillaria Mellea. Mycologia, 1987, 79, 69-76.	1.9	92
36	Restriction Fragment Length Polymorphisms in the Mushrooms <i>Agaricus brunnescens</i> and <i>Agaricus bitorquis</i> Applied and Environmental Microbiology, 1987, 53, 816-822.	3.1	93

#	Article	IF	CITATION
37	Biological Species of Armillaria in North America: Redesignation of Groups IV and VIII and Enumeration of Voucher Strains for Other Groups. Mycologia, 1986, 78, 837-839.	1.9	43
38	Bifactorial Heterothallism and Vegetative Diploidy in <i>Clitocybe Tabescens</i> . Mycologia, 1982, 74, 911-916.	1.9	18
39	Biological Species of Armillaria Melleain North America. Mycologia, 1979, 71, 402-414.	1.9	186
40	Random Assortment In Armillaria Mellea. Mycologia, 1979, 71, 1278-1279.	1.9	2
41	Genetic Identification of Clones of <i>Armillaria mellea</i> iin Coniferous Forests in Washington. Phytopathology, 1979, 69, 1109.	2.2	44
42	Sex and diploidy in Armillaria mellea. Experimental Mycology, 1978, 2, 119-129.	1.6	132
43	Dikaryons, Diploids, and Evolution. , 0, , 333-348.		25