
Neil H Thomson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics, 2020, 10, 10973-10992.	10.0	45
2	On-chip pressure measurements and channel deformation after oil absorption. SN Applied Sciences, 2020, 2, 1.	2.9	6
3	Subâ€Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. Advanced Science, 2019, 6, 1900911.	11.2	56
4	Subâ€Nanometer Thick Gold Nanosheets: Subâ€Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts (Adv. Sci. 21/2019). Advanced Science, 2019, 6, 1970129.	11.2	0
5	Molecular Effects of Glycerol on Lipid Monolayers at the Gas–Liquid Interface: Impact on Microbubble Physical and Mechanical Properties. Langmuir, 2019, 35, 10097-10105.	3.5	24
6	Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy. Methods, 2017, 120, 91-102.	3.8	4
7	Liquid–Liquid Interfacial Imaging Using Atomic Force Microscopy. Advanced Materials Interfaces, 2017, 4, 1700203.	3.7	17
8	Influence of 4-vinylbenzylation on the rheological and swelling properties of photo-activated collagen hydrogels. MRS Advances, 2016, 1, 533-538.	0.9	10
9	The nature of the air-cleaved mica surface. Surface Science Reports, 2016, 71, 367-390.	7.2	103
10	Real Space Imaging of Nanoparticle Assembly at Liquid–Liquid Interfaces with Nanoscale Resolution. Nano Letters, 2016, 16, 5463-5468.	9.1	55
11	Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels. Journal of the Royal Society Interface, 2015, 12, 20141079.	3.4	53
12	Poly(ethylene glycol) Lipid-Shelled Microbubbles: Abundance, Stability, and Mechanical Properties. Langmuir, 2014, 30, 5557-5563.	3.5	48
13	Ion Exchange and DNA Molecular Dip Sticks: Studying the Nanoscale Surface Wetting of Muscovite Mica. Journal of Physical Chemistry C, 2014, 118, 4695-4701.	3.1	12
14	DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Scientific Reports, 2014, 4, 6158.	3.3	19
15	Multiple RNA Polymerase Transactions on Single DNA Templates. Biophysical Journal, 2013, 104, 365a.	0.5	1
16	Single-stranded DNA loops as fiducial markers for exploring DNA–protein interactions in single molecule imaging. Methods, 2013, 60, 122-130.	3.8	5
17	Atomic Force Microscopy Imaging of Macromolecular Complexes. Methods in Molecular Biology, 2013, 950, 315-341.	0.9	4
18	Nanomechanics of Lipid Encapsulated Microbubbles with Functional Coatings. Langmuir, 2013, 29, 4096-4103.	3.5	36

Neil H Thomson

#	Article	IF	CITATIONS
19	Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays. Macromolecules, 2013, 46, 9634-9641.	4.8	29
20	Stability, resolution, and ultra-low wear amplitude modulation atomic force microscopy of DNA: Small amplitude small set-point imaging. Applied Physics Letters, 2013, 103, .	3.3	35
21	Single-stranded loops as end-label polarity markers for double-stranded linear DNA templates in atomic force microscopy. Nucleic Acids Research, 2012, 40, e99-e99.	14.5	5
22	A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy. Review of Scientific Instruments, 2012, 83, 043707.	1.3	81
23	Spatial horizons in amplitude and frequency modulation atomic force microscopy. Nanoscale, 2012, 4, 2463.	5.6	7
24	Investigation of Nanoscale Interactions by Means of Subharmonic Excitation. Journal of Physical Chemistry Letters, 2012, 3, 2125-2129.	4.6	9
25	Hydrophilicity of a Single DNA Molecule. Journal of Physical Chemistry C, 2012, 116, 2807-2818.	3.1	20
26	Energy dissipation in the presence of sub-harmonic excitation in dynamic atomic force microscopy. Europhysics Letters, 2012, 99, 56002.	2.0	8
27	Single-molecule studies of DNA transcription using atomic force microscopy. Physical Biology, 2012, 9, 021001.	1.8	26
28	Dynamic mechanical analysis of collagen fibrils at the nanoscale. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5, 165-170.	3.1	60
29	Atomic Force Microscopy of Isolated Nanostructures: Biomolecular Imaging in Hydrated Environments – Status and Future Prospects. Nanoscience and Technology, 2012, , 99-135.	1.5	Ο
30	A Structural Model for Apolipoprotein C-II Amyloid Fibrils: Experimental Characterization and Molecular Dynamics Simulations. Journal of Molecular Biology, 2011, 405, 1246-1266.	4.2	45
31	The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features. PLoS ONE, 2011, 6, e23821.	2.5	80
32	Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 535-540.	3.1	31
33	How localized are energy dissipation processes in nanoscale interactions?. Nanotechnology, 2011, 22, 345401.	2.6	28
34	Measuring the true height of water films on surfaces. Nanotechnology, 2011, 22, 465705.	2.6	54
35	Energy dissipation in a dynamic nanoscale contact. Applied Physics Letters, 2011, 98, .	3.3	25
36	High Resolution Imaging of Immunoglobulin G Antibodies and Other Biomolecules Using Amplitude Modulation Atomic Force Microscopy in Air. Methods in Molecular Biology, 2011, 736, 61-79.	0.9	3

NEIL H THOMSON

#	Article	IF	CITATIONS
37	Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems. Nanotechnology, 2010, 21, 225710.	2.6	39
38	Three-channel false colour AFM images for improved interpretation of complex surfaces: A study of filamentous cyanobacteria. Ultramicroscopy, 2010, 110, 718-722.	1.9	3
39	Improvement of the pore trapping method to immobilize vital coccoid bacteria for highâ€resolution AFM: a study of <i>Staphylococcus aureus</i> . Journal of Microscopy, 2010, 238, 102-110.	1.8	23
40	RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic Acids Research, 2010, 38, 1874-1888.	14.5	13
41	Cantilever dynamics in amplitude modulation AFM: continuous and discontinuous transitions. Journal Physics D: Applied Physics, 2010, 43, 275401.	2.8	17
42	Atomic force microscopy of DNA at high humidity: irreversible conformational switching of supercoiled molecules. Physical Chemistry Chemical Physics, 2010, 12, 14727.	2.8	21
43	Atomic Force Microscopy of DNA Structure and Interactions. , 2010, , 389-426.		0
44	Tuning the Elastic Modulus of Hydrated Collagen Fibrils. Biophysical Journal, 2009, 97, 2985-2992.	0.5	143
45	Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria. Applied Physics Letters, 2009, 94, 043901.	3.3	24
46	Effects of hydration on the mechanical response of individual collagen fibrils. Applied Physics Letters, 2008, 92, .	3.3	111
47	Atomic Force Microscopy of DNA Structure and Interactions. Nanoscience and Technology, 2007, , 127-164.	1.5	3
48	Investigating the structural properties of amyloid-like fibrils formedin vitro fromβ2-microglobulin using limited proteolysis and electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 1628-1636.	1.5	58
49	Imaging RNA polymerase-amelogenin gene complexes with single molecule resolution using atomic force microscopy. European Journal of Oral Sciences, 2006, 114, 133-138.	1.5	8
50	Studying silane mobility on hydrated mica using ambient AFM. Ultramicroscopy, 2006, 106, 765-770.	1.9	9
51	Amyloid Under the Atomic Force Microscope. Protein and Peptide Letters, 2006, 13, 261-270.	0.9	60
52	Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Research, 2006, 34, 5416-5425.	14.5	102
53	Imaging the substructure of antibodies with tapping-mode AFM in air: the importance of a water layer on mica. Journal of Microscopy, 2005, 217, 193-199.	1.8	59
54	Adsorption and Self-Assembly of Peptides on Mica Substrates. Angewandte Chemie - International Edition, 2005, 44, 1965-1968.	13.8	112

4

NEIL H THOMSON

#	Article	IF	CITATIONS
55	The substructure of immunoglobulin G resolved to 25kDa using amplitude modulation AFM in air. Ultramicroscopy, 2005, 105, 103-110.	1.9	48
56	Competing Pathways Determine Fibril Morphology in the Self-assembly of β2-Microglobulin into Amyloid. Journal of Molecular Biology, 2005, 351, 850-864.	4.2	320
57	Nested genes: Biological implications and use of AFM for analysis. Gene, 2005, 350, 15-23.	2.2	27
58	Formation of Aminosilane-Functionalized Mica for Atomic Force Microscopy Imaging of DNA. Langmuir, 2005, 21, 7884-7891.	3.5	80
59	Nucleotide Binding to DNA Gyrase Causes Loss of DNA Wrap. Journal of Molecular Biology, 2004, 337, 597-610.	4.2	70
60	Large fluctuations in the disassembly rate of microtubules revealed by atomic force microscopy. Ultramicroscopy, 2003, 97, 239-247.	1.9	10
61	Hierarchical Assembly of β2-Microglobulin Amyloid In Vitro Revealed by Atomic Force Microscopy. Journal of Molecular Biology, 2003, 330, 785-797.	4.2	213
62	The Circularization of Amyloid Fibrils Formed by Apolipoprotein C-II. Biophysical Journal, 2003, 85, 3979-3990.	0.5	62
63	The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO Journal, 2002, 21, 2903-2911.	7.8	137
64	β2-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. Journal of Molecular Biology, 2001, 313, 559-571.	4.2	186
65	Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy. Journal of Microscopy, 2001, 202, 518-532.	1.8	111
66	Setup for observing living cells using a commercial atomic force microscope. Review of Scientific Instruments, 2000, 71, 4338.	1.3	9
67	Atomic Force Microscopy of Cationic Liposomes. Langmuir, 2000, 16, 4813-4818.	3.5	33
68	Scanning probe microscopy studies of cereal seed storage protein structures. Scanning, 1999, 21, 293-298.	1.5	11
69	Methods for fabricating and characterizing a new generation of biomimetic materials. Materials Science and Engineering C, 1999, 7, 37-43.	7.3	101
70	Mechanical properties of carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 69, 255-260.	2.3	1,283
71	Small angle X-ray scattering of wheat seed-storage proteins: α-, γ- and ï‰-gliadins and the high molecular weight (HMW) subunits of glutenin. BBA - Proteins and Proteomics, 1999, 1430, 359-366.	2.1	65
72	Direct Observation of One-Dimensional Diffusion and Transcription by Escherichia coli RNA Polymerase. Biophysical Journal, 1999, 77, 2284-2294.	0.5	238

Neil H Thomson

#	Article	IF	CITATIONS
73	Oriented, Active Escherichia coli RNA Polymerase: An Atomic Force Microscope Study. Biophysical Journal, 1999, 76, 1024-1033.	0.5	69
74	Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Research, 1997, 25, 4379-4384.	14.5	95
75	Scanning Probe Microscopes—Applications in Cereal Science. Cereal Chemistry, 1997, 74, 193-199.	2.2	18
76	Escherichia coli RNA Polymerase Activity Observed Using Atomic Force Microscopy. Biochemistry, 1997, 36, 461-468.	2.5	341
77	Biological applications of the AFM: From single molecules to organs. International Journal of Imaging Systems and Technology, 1997, 8, 151-161.	4.1	132
78	Protein tracking and detection of protein motion using atomic force microscopy. Biophysical Journal, 1996, 70, 2421-2431.	0.5	113
79	Short cantilevers for atomic force microscopy. Review of Scientific Instruments, 1996, 67, 3583-3590.	1.3	456
80	Reversible Binding of DNA to Mica for AFM Imaging. Langmuir, 1996, 12, 5905-5908.	3.5	122
81	Structure, Assembly and Targeting of Wheat Storage Proteins. Journal of Plant Physiology, 1995, 145, 620-625.	3.5	20
82	STM investigations of an alkane-metal-system (C32H66/In). Polymer Bulletin, 1994, 33, 687-691.	3.3	3