Kathleen Janee Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1116488/publications.pdf

Version: 2024-02-01

116 papers

9,683 citations

54 h-index 95

g-index

237 all docs

237 docs citations

times ranked

237

7635 citing authors

#	Article	IF	Citations
1	Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews Molecular Cell Biology, 2011, 12, 565-580.	37.0	375
2	Are desmosomes more than tethers for intermediate filaments?. Nature Reviews Molecular Cell Biology, 2000, 1, 208-216.	37.0	365
3	Desmosomes: New Perspectives on a Classic. Journal of Investigative Dermatology, 2007, 127, 2499-2515.	0.7	339
4	Working out the strength and flexibility of desmosomes. Nature Reviews Molecular Cell Biology, 2004, 5, 271-281.	37.0	304
5	Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nature Genetics, 2013, 45, 1244-1248.	21.4	289
6	Desmosomal Dysfunction due to Mutations in Desmoplakin Causes Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circulation Research, 2006, 99, 646-655.	4.5	276
7	Plakins: a family of versatile cytolinker proteins. Trends in Cell Biology, 2002, 12, 37-45.	7.9	273
8	Intercellular Junction Assembly, Dynamics, and Homeostasis. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000125-a000125.	5.5	238
9	p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. Journal of Cell Biology, 2003, 163, 547-557.	5.2	237
10	Antigen-Specific Immunoadsorption of Pathogenic Autoantibodies in Pemphigus Foliaceus. Journal of Investigative Dermatology, 1995, 104, 895-901.	0.7	232
11	Interactions Between Ankyrin-G, Plakophilin-2, and Connexin43 at the Cardiac Intercalated Disc. Circulation Research, 2011, 109, 193-201.	4.5	218
12	The Amino-terminal Domain of Desmoplakin Binds to Plakoglobin and Clusters Desmosomal Cadherin–Plakoglobin Complexes. Journal of Cell Biology, 1997, 139, 773-784.	5.2	217
13	Structure, Function, and Regulation of Desmosomes. Progress in Molecular Biology and Translational Science, 2013, 116, 95-118.	1.7	213
14	Protein Binding and Functional Characterization of Plakophilin 2. Journal of Biological Chemistry, 2002, 277, 10512-10522.	3.4	198
15	Desmoglein 1–dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. Journal of Cell Biology, 2009, 185, 1243-1258.	5.2	186
16	Intermediate Filaments: Possible Functions as Cytoskeletal Connecting Links Between the Nucleus and the Cell Surface. Annals of the New York Academy of Sciences, 1985, 455, 1-17.	3.8	160
17	Defining desmosomal plakophilin-3 interactions. Journal of Cell Biology, 2003, 161, 403-416.	5.2	148
18	Two-hybrid Analysis Reveals Fundamental Differences in Direct Interactions between Desmoplakin and Cell Type-specific Intermediate Filaments. Journal of Biological Chemistry, 1997, 272, 21495-21503.	3.4	138

#	Article	IF	CITATIONS
19	Desmosome assembly and dynamics. Trends in Cell Biology, 2013, 23, 537-546.	7.9	138
20	Epidermal Growth Factor Receptor Inhibition Promotes Desmosome Assembly and Strengthens Intercellular Adhesion in Squamous Cell Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 37191-37200.	3.4	135
21	Intermediate filament–membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. Journal of Cell Biology, 2002, 159, 1005-1017.	5.2	134
22	Desmoplakin assembly dynamics in four dimensions. Journal of Cell Biology, 2005, 171, 1045-1059.	5.2	134
23	Plakophilin 2: a critical scaffold for PKCα that regulates intercellular junction assembly. Journal of Cell Biology, 2008, 181, 605-613.	5.2	133
24	Plakophilins: multifunctional scaffolds for adhesion and signaling. Current Opinion in Cell Biology, 2009, 21, 708-716.	5.4	131
25	The Head Domain of Plakophilin-1 Binds to Desmoplakin and Enhances Its Recruitment to Desmosomes. Journal of Biological Chemistry, 1999, 274, 18145-18148.	3.4	130
26	Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. Journal of Clinical Investigation, 2013, 123, 1556-1570.	8.2	124
27	Discriminating roles of desmosomal cadherins: Beyond desmosomal adhesion. Journal of Dermatological Science, 2007, 45, 7-21.	1.9	120
28	Regulation of desmosome assembly and adhesion. Seminars in Cell and Developmental Biology, 2004, 15, 665-677.	5.0	117
29	Desmosomes: Regulators of Cellular Signaling and Adhesion in Epidermal Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015297-a015297.	6.2	103
30	Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. Journal of Allergy and Clinical Immunology, 2015, 136, 1268-1276.	2.9	103
31	Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029207.	5.5	102
32	Interaction of the Bullous Pemphigoid Antigen 1 (BP230) and Desmoplakin with Intermediate Filaments Is Mediated by Distinct Sequences within Their COOH Terminus. Molecular Biology of the Cell, 2003, 14, 1978-1992.	2.1	98
33	The Differentiation-dependent Desmosomal Cadherin Desmoglein 1 Is a Novel Caspase-3 Target That Regulates Apoptosis in Keratinocytes. Journal of Biological Chemistry, 2006, 281, 3614-3624.	3.4	97
34	Desmosome regulation and signaling in disease. Cell and Tissue Research, 2015, 360, 501-512.	2.9	96
35	EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2. Molecular Biology of the Cell, 2009, 20, 328-337.	2.1	90
36	Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation, 2004, 72, 419-433.	1.9	89

#	Article	IF	CITATIONS
37	Plakophilin 2 Couples Actomyosin Remodeling to Desmosomal Plaque Assembly via RhoA. Molecular Biology of the Cell, 2010, 21, 2844-2859.	2.1	89
38	Plakoglobin suppresses keratinocyte motility through both cell-cell adhesion-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5420-5425.	7.1	85
39	Intermediate Filament Associated Proteins. Advances in Protein Chemistry, 2005, 70, 143-202.	4.4	84
40	Desmosomes at a glance. Journal of Cell Science, 2009, 122, 4401-4407.	2.0	84
41	Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. Journal of Cell Biology, 2011, 195, 1185-1203.	5.2	84
42	Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. European Journal of Heart Failure, 2019, 21, 955-964.	7.1	84
43	Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. Journal of Cell Biology, 2016, 212, 425-438.	5.2	83
44	Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nature Structural Biology, 2002, 9, 612-20.	9.7	82
45	Mechanisms of Plakoglobin-dependent Adhesion. Journal of Biological Chemistry, 2005, 280, 40355-40363.	3.4	82
46	Analysis of Desmosomal Cadherin–Adhesive Function and Stoichiometry of Desmosomal Cadherin-Plakoglobin Complexes. Journal of Investigative Dermatology, 1996, 107, 293-300.	0.7	81
47	The Expression of Desmoglein Isoforms in Cultured Human Keratinocytes Is Regulated by Calcium, Serum, and Protein Kinase C. Experimental Cell Research, 1998, 239, 50-59.	2.6	78
48	Tyrosine-phosphorylated Plakoglobin Is Associated with Desmogleins but Not Desmoplakin after Epidermal Growth Factor Receptor Activation. Journal of Biological Chemistry, 2001, 276, 24871-24880.	3.4	73
49	Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin–EB1 interactions. Journal of Cell Biology, 2014, 206, 779-797.	5.2	70
50	The desmoplakin–intermediate filament linkage regulates cell mechanics. Molecular Biology of the Cell, 2017, 28, 3156-3164.	2.1	70
51	Desmoplakin Regulates Desmosome Hyperadhesion. Journal of Investigative Dermatology, 2012, 132, 482-485.	0.7	62
52	Desmosomes:Â Essential contributors to an integrated intercellular junction network. F1000Research, 2019, 8, 2150.	1.6	59
53	Plakoglobin regulates cell motility through Rho- and fibronectin-dependent Src signaling. Journal of Cell Science, 2010, 123, 3576-3586.	2.0	58
54	GSK3- and PRMT-1–dependent modifications of desmoplakin control desmoplakin–cytoskeleton dynamics. Journal of Cell Biology, 2015, 208, 597-612.	5.2	58

#	Article	IF	CITATIONS
55	New insights into the molecular basis of desmoplakinand desmin-related cardiomyopathies. Journal of Cell Science, 2006, 119, 4974-4985.	2.0	57
56	Different roles of cadherins in the assembly and structural integrity of the desmosome complex. Journal of Cell Science, 2014, 127, 2339-50.	2.0	56
57	The plakin family. Journal of Cell Science, 2001, 114, 3409-3410.	2.0	56
58	Structure and function of desmosomal transmembrane core and plaque molecules. Biophysical Chemistry, 1994, 50, 97-112.	2.8	55
59	The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling. FASEB Journal, 2011, 25, 990-1001.	0.5	55
60	In Vitro Model of the Epidermis. Methods in Enzymology, 2016, 569, 287-308.	1.0	54
61	Desmosomes in the Heart: A Review of Clinical and Mechanistic Analyses. Cell Communication and Adhesion, 2014, 21, 109-128.	1.0	53
62	The effects of taxol on cytoskeletal components in cultured fibroblasts and epithelial cells. Cell Motility, 1983, 3, 283-305.	1.8	52
63	Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nature Communications, 2018, 9, 1053.	12.8	52
64	Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading. Cytoskeleton, 1986, 6, 406-418.	4.4	50
65	Structural and Functional Diversity of Desmosomes. Cell Communication and Adhesion, 2013, 20, 171-187.	1.0	50
66	Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells. Molecular and Cellular Biology, 2015, 35, 2684-2698.	2.3	48
67	Evidence for an interaction between the cell surface and intermediate filaments in cultured fibroblasts. Cytoskeleton, 1986, 6, 389-405.	4.4	45
68	Comparative Analysis of Armadillo Family Proteins in the Regulation of A431 Epithelial Cell Junction Assembly, Adhesion and Migration. Journal of Investigative Dermatology, 2004, 123, 426-433.	0.7	44
69	A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. Journal of Cell Science, 2017, 130, 3437-3445.	2.0	43
70	Scaling up single-cell mechanics to multicellular tissues – the role of the intermediate filament–desmosome network. Journal of Cell Science, 2020, 133, .	2.0	42
71	Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. Journal of Cell Biology, 2018, 217, 3219-3235.	5.2	41
72	Proximity Ligation Assay for Detecting Proteinâ€Protein Interactions and Protein Modifications in Cells and Tissues in Situ. Current Protocols in Cell Biology, 2020, 89, e115.	2.3	41

#	Article	IF	Citations
73	Structure of Desmoplakin and Its Association with Intermediate Filaments. Journal of Dermatology, 1992, 19, 765-769.	1.2	39
74	Plakoglobin Deficiency Protects Keratinocytes from Apoptosis. Journal of Investigative Dermatology, 2007, 127, 792-801.	0.7	37
75	The C-terminal unique region of desmoglein 2 inhibits its internalization via tail–tail interactions. Journal of Cell Biology, 2012, 199, 699-711.	5.2	37
76	Filaggrin 2 Deficiency Results in Abnormal Cell-Cell Adhesion in the Cornified Cell Layers and Causes Peeling Skin Syndrome Type A. Journal of Investigative Dermatology, 2018, 138, 1736-1743.	0.7	37
77	Desmosomal Cadherins in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 47-72.	22.4	37
78	The Desmosomal Protein Desmoglein 1 Aids Recovery of Epidermal Differentiation after Acute UV Light Exposure. Journal of Investigative Dermatology, 2014, 134, 2154-2162.	0.7	35
79	The GEF Bcr activates RhoA/MAL signaling to promote keratinocyte differentiation via desmoglein-1. Journal of Cell Biology, 2013, 202, 653-666.	5.2	34
80	Insights from a Desmoplakin Mutation Identified in Lethal Acantholytic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2010, 130, 2680-2683.	0.7	33
81	Desmosomes. Current Biology, 2011, 21, R529-R531.	3.9	33
82	Tracing the Evolutionary Origin of Desmosomes. Current Biology, 2020, 30, R535-R543.	3.9	33
83	Plakoglobin Rescues Adhesive Defects Induced by Ectodomain Truncation of the Desmosomal Cadherin Desmoglein 1. American Journal of Pathology, 2010, 177, 2921-2937.	3.8	31
84	Dominant <i>de novo DSP</i> mutations cause erythrokeratodermia-cardiomyopathy syndrome. Human Molecular Genetics, 2016, 25, 348-357.	2.9	31
85	Intermediate Filaments and the Plasma Membrane. Cold Spring Harbor Perspectives in Biology, 2017, 9, a025866.	5.5	31
86	Epithelial barrier dysfunction in desmoglein-1 deficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 702-706.e7.	2.9	31
87	Keratinocyte cadherin desmoglein 1 controls melanocyte behavior through paracrine signaling. Pigment Cell and Melanoma Research, 2020, 33, 305-317.	3.3	31
88	Cadherin function: Breaking the barrier. Current Biology, 2001, 11, R569-R572.	3.9	29
89	Research Techniques Made Simple: Methodology andÂApplications of Förster Resonance Energy TransferÂ(FRET) Microscopy. Journal of Investigative Dermatology, 2017, 137, e185-e191.	0.7	29
90	The Relationship Between Childhood Maltreatment and Violence to Others in Individuals With Psychosis: A Systematic Review and Meta-Analysis. Trauma, Violence, and Abuse, 2019, 20, 358-373.	6.2	29

#	Article	IF	Citations
91	The Human Genes for Desmogleins (DSG1 and DSG3) Are Located in a Small Region on Chromosome 18q12. Genomics, 1994, 20, 492-495.	2.9	28
92	Phosphorylation of serine 4642 in the COOH-extremity of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. Journal of Cell Science, 2013, 126, 4195-207.	2.0	28
93	Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation. Molecular Biology of the Cell, 2014, 25, 3749-3764.	2.1	28
94	IL- $36\hat{l}^3$ Is Involved in Psoriasis and Allergic Contact Dermatitis. Journal of Investigative Dermatology, 2016, 136, 1520-1523.	0.7	28
95	Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression. Journal of Investigative Dermatology, 2014, 134, 112-122.	0.7	25
96	Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. Journal of Clinical Investigation, 2022, 132, .	8.2	24
97	Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Current Biology, 2021, 31, 3275-3291.e5.	3.9	22
98	In Vitro Methods for Investigating Desmoplakin–Intermediate Filament Interactions and Their Role in Adhesive Strength. Methods in Cell Biology, 2004, 78, 757-786.	1.1	21
99	The Desmosomal Armadillo Protein Plakoglobin Regulates Prostate Cancer Cell Adhesion and Motility through Vitronectin-Dependent Src Signaling. PLoS ONE, 2012, 7, e42132.	2.5	19
100	Regulation of intestinal epithelial intercellular adhesion and barrier function by desmosomal cadherin desmocollin-2. Molecular Biology of the Cell, 2021, 32, 753-768.	2.1	18
101	<scp>SVEP</scp> 1 plays a crucial role in epidermal differentiation. Experimental Dermatology, 2017, 26, 423-430.	2.9	17
102	The Role of Desmoglein 1 in Gap Junction Turnover Revealed through the Study of SAMÂSyndrome. Journal of Investigative Dermatology, 2020, 140, 556-567.e9.	0.7	17
103	Techniques to stimulate and interrogate cell–cell adhesion mechanics. Extreme Mechanics Letters, 2018, 20, 125-139.	4.1	16
104	Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner. Molecular Cancer Research, 2019, 17, 1195-1206.	3.4	16
105	Epidermal Growth Factor Receptor neddylation is regulated by a desmosomal-COP9 (Constitutive) Tj ETQq1 1 ().784314 rg 6.0	BT ₁ Overlock
106	The Desmosome-Keratin Scaffold Integrates ErbB Family and Mechanical Signaling to Polarize Epidermal Structure and Function. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	9
107	Plectin pulls it together, coupling the cortical actin and intermediate filament cytoskeletons. Journal of Cell Biology, 2022, 221, .	5.2	5
108	Epidermal Desmoglein 1 Expression Is Reduced in Kidney Transplant Recipients Compared with Immunocompetent Patients. Journal of Investigative Dermatology, 2016, 136, 1908-1912.	0.7	2

#	Article	IF	Citations
109	Plakophilin 3 and Par3 facilitate desmosomes' association with the apical junctional complex. Molecular Biology of the Cell, 2021, 32, 1824-1837.	2.1	2
110	Regulatory roles of the cadherin superfamily. F1000 Biology Reports, 2009, 1, 13.	4.0	2
111	Margaret (Peggy) Wheelock (1945-2009): cell scientist, mentor and friend. Journal of Cell Science, 2009, 122, 1475-1476.	2.0	O
112	Targeting of desmoglein 1 in exfoliative toxin-mediated disease. Expert Review of Dermatology, 2010, 5, 659-670.	0.3	0
113	Degrees of Freedom: Your Future inÂBiomedical Research. Journal of Investigative Dermatology, 2016, 136, 1073-1076.	0.7	O
114	Connecting Cells Desmosomes and Hemidesmosomes. , 2021, , 134-142.		0
115	Plakophilin-2 loss promotes TGF- $\hat{1}^21/p$ 38 MAPK-dependent fibrotic gene expression in cardiomyocytes. Journal of Experimental Medicine, 2016, 213, 2133OIA12.	8.5	0
116	An exploration of young people's experiences relating to stability and permanence throughout their care journey. Qualitative Social Work, 2023, 22, 771-794.	1.4	O