## James Brett Case

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1115987/publications.pdf Version: 2024-02-01



IAMES RDETT CASE

| #  | Article                                                                                                                                                                                               | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.                                                                                               | 27.8 | 1,695     |
| 2  | Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.                                                                                                 | 27.8 | 956       |
| 3  | Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.                                                        | 30.7 | 838       |
| 4  | SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.                                                                                               | 27.8 | 586       |
| 5  | Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19.<br>Nature Immunology, 2020, 21, 1506-1516.                                                         | 14.5 | 563       |
| 6  | Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science,<br>2020, 370, 950-957.                                                                            | 12.6 | 504       |
| 7  | A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.                                                                                 | 28.9 | 486       |
| 8  | SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.                                                                                                  | 27.8 | 475       |
| 9  | De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.                                                                                                           | 12.6 | 464       |
| 10 | Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.                                         | 30.7 | 450       |
| 11 | A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against<br>SARS-CoV-2. Cell, 2020, 183, 169-184.e13.                                                                | 28.9 | 446       |
| 12 | Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.                        | 11.0 | 380       |
| 13 | The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.                                                                                                          | 28.9 | 331       |
| 14 | Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.                                             | 28.9 | 297       |
| 15 | Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature<br>Microbiology, 2021, 6, 1233-1244.                                                            | 13.3 | 237       |
| 16 | In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.                                                                                                  | 27.8 | 222       |
| 17 | Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology, 2020, 548, 39-48.                                                                                                        | 2.4  | 209       |
| 18 | Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32105-32113. | 7.1  | 192       |

JAMES BRETT CASE

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Journal of Immunology, 2020, 205, 915-922.                                                                      | 0.8  | 186       |
| 20 | Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against<br>SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host and Microbe, 2020, 28, 465-474.e4.                   | 11.0 | 156       |
| 21 | Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20803-20813. | 7.1  | 154       |
| 22 | A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Reports, 2021, 36, 109400.             | 6.4  | 119       |
| 23 | Association between SARS-CoV-2 Neutralizing Antibodies and Commercial Serological Assays. Clinical Chemistry, 2020, 66, 1538-1547.                                                           | 3.2  | 112       |
| 24 | A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Reports Medicine, 2021, 2, 100230.                         | 6.5  | 99        |
| 25 | SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell<br>Reports, 2021, 37, 110143.                                                                   | 6.4  | 94        |
| 26 | Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2<br>Omicron lineage strains. Nature Communications, 2022, 13, .                                 | 12.8 | 93        |
| 27 | A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.               | 14.3 | 79        |
| 28 | LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature, 2020, 588, 308-314.                                                                                                  | 27.8 | 78        |
| 29 | A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates.<br>Science Translational Medicine, 2022, 14, .                                          | 12.4 | 73        |
| 30 | Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell, 2022, 185, 1572-1587.e11.                                                        | 28.9 | 71        |
| 31 | Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.                 | 12.4 | 68        |
| 32 | SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.                                                              | 3.4  | 58        |
| 33 | A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.                                                                       | 14.3 | 52        |
| 34 | The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.                                                   | 11.0 | 52        |
| 35 | On the road to ending the COVID-19 pandemic: Are we there yet?. Virology, 2021, 557, 70-85.                                                                                                  | 2.4  | 38        |
| 36 | Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.                              | 11.0 | 36        |

JAMES BRETT CASE

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape<br>Mutations. Journal of Molecular Biology, 2021, 433, 167177.                   | 4.2 | 31        |
| 38 | The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes.<br>MBio, 2022, 13, .                                                      | 4.1 | 21        |
| 39 | Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a<br>Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354. | 0.4 | 16        |
| 40 | Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell<br>Reports, 2022, 38, 110561.                                                | 6.4 | 16        |
| 41 | Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.                                                  | 6.4 | 14        |
| 42 | JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. MBio, 2022, 13, e0337721.                                       | 4.1 | 14        |
| 43 | An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .                                           | 8.2 | 14        |
| 44 | Targeting the Fusion Process of SARS-CoV-2 Infection by Small Molecule Inhibitors. MBio, 2022, 13, e0323821.                                                                   | 4.1 | 11        |
| 45 | Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. Cell Reports, 2022, 39, 110905.                                  | 6.4 | 5         |