Stephen M Fowler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1115891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro and clinical investigations to determine the drug-drug interaction potential of entrectinib, a small molecule inhibitor of neurotrophic tyrosine receptor kinase (NTRK). Investigational New Drugs, 2022, 40, 68-80.	2.6	11
2	Addressing Today's Absorption, Distribution, Metabolism, and Excretion (ADME) Challenges in the Translation of In Vitro ADME Characteristics to Humans: A Case Study of the <i>SMN2</i> mRNA Splicing Modifier Risdiplam. Drug Metabolism and Disposition, 2022, 50, 65-75.	3.3	7
3	Exploration and application of a liver-on-a-chip device in combination with modelling and simulation for quantitative drug metabolism studies. Lab on A Chip, 2022, 22, 1187-1205.	6.0	22
4	Estimation of Fraction Metabolized by Cytochrome P450 Enzymes Using Long-Term Cocultured Human Hepatocytes. Drug Metabolism and Disposition, 2022, 50, 566-575.	3.3	7
5	Accelerating Clinical Development of Idasanutlin through a Physiologically Based Pharmacokinetic Modeling Risk Assessment for CYP450 Isoenzyme-Related Drug–Drug Interactions. Drug Metabolism and Disposition, 2022, 50, 214-223.	3.3	1
6	Application of a gut–liver-on-a-chip device and mechanistic modelling to the quantitative <i>in vitro</i> pharmacokinetic study of mycophenolate mofetil. Lab on A Chip, 2022, 22, 2853-2868.	6.0	18
7	Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2021, 49, 760-769.	3.3	7
8	Physiologically-Based Pharmacokinetic Modelling of Entrectinib Parent and Active Metabolite to Support Regulatory Decision-Making. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 779-791.	1.6	7
9	Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. Journal of Clinical Pharmacology, 2020, 60, 722-733.	2.0	4
10	Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. Lab on A Chip, 2020, 20, 446-467.	6.0	66
11	Construction and Verification of Physiologically Based Pharmacokinetic Models for Four Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine. AAPS Journal, 2020, 22, 128.	4.4	16
12	Application of the Extended Clearance Classification System (ECCS) in Drug Discovery and Development: Selection of Appropriate In Vitro Tools and Clearance Prediction. Drug Metabolism and Disposition, 2020, 48, 849-860.	3.3	20
13	In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-Term Suspension and Long-Term Co-cultured Human Hepatocytes. AAPS Journal, 2020, 22, 131.	4.4	18
14	Use of Phenotypically Poor Metabolizer Individual Donor Human Liver Microsomes To Identify Selective Substrates of UGT2B10. Drug Metabolism and Disposition, 2020, 48, 176-186.	3.3	6
15	The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling. Clinical Pharmacokinetics, 2019, 58, 189-211.	3.5	29
16	Characterization of the Ontogeny of Hepatic UDPâ€Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. Journal of Clinical Pharmacology, 2019, 59, S42-S55.	2.0	26
17	Impact of Intracellular Concentrations on Metabolic Drug-Drug Interaction Studies. AAPS Journal, 2019, 21, 77.	4.4	13
18	The In Vitro Biotransformation of the Fusion Protein Tetranectin-Apolipoprotein A1. Scientific Reports, 2019, 9, 4074.	3.3	4

STEPHEN M FOWLER

#	Article	IF	CITATIONS
19	Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools. SLAS Discovery, 2019, 24, 523-536.	2.7	16
20	Optimization of Experimental Conditions of Automated Glucuronidation Assays in Human Liver Microsomes Using a Cocktail Approach and Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry. Drug Metabolism and Disposition, 2019, 47, 124-134.	3.3	25
21	Simultaneous Assessment of Clearance, Metabolism, Induction, and Drug-Drug Interaction Potential Using a Long-Term In Vitro Liver Model for a Novel Hepatitis B Virus Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 237-248.	2.5	13
22	<i>In vitro</i> metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica, 2018, 48, 546-554.	1.1	16
23	Modelâ€Based Assessments of CYPâ€Mediated Drug–Drug Interaction Risk of Alectinib: Physiologically Based Pharmacokinetic Modeling Supported Clinical Development. Clinical Pharmacology and Therapeutics, 2018, 104, 505-514.	4.7	20
24	Progress in Prediction and Interpretation of Clinically Relevant Metabolic Drug-Drug Interactions: a Minireview Illustrating Recent Developments and Current Opportunities. Current Pharmacology Reports, 2017, 3, 36-49.	3.0	36
25	Low Potential of Basimglurant to Be Involved in Drug-Drug Interactions: Influence of Non–Michaelis-Menten P450 Kinetics on Fraction Metabolized. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 164-173.	2.5	7
26	Metabolic Profiling of Human Long-Term Liver Models and Hepatic Clearance Predictions from In Vitro Data Using Nonlinear Mixed-Effects Modeling. AAPS Journal, 2017, 19, 534-550.	4.4	78
27	Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates. Archives of Toxicology, 2017, 91, 1187-1197.	4.2	24
28	Shedding light on minipig drug metabolism – elevated amide hydrolysisin vitro. Xenobiotica, 2016, 46, 483-494.	1.1	6
29	Effects of Cytochrome P450 3A4 Inhibitors—Ketoconazole and Erythromycin—on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions. Clinical Pharmacokinetics, 2016, 55, 237-247.	3.5	10
30	A UGT2B10 Splicing Polymorphism Common in African Populations May Greatly Increase Drug Exposure. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 358-367.	2.5	46
31	Minimizing DILI risk in drug discovery — A screening tool for drug candidates. Toxicology in Vitro, 2015, 30, 429-437.	2.4	71
32	<i>In vitro</i> profiling of the metabolism and drug–drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP. Xenobiotica, 2015, 45, 230-238.	1.1	24
33	A novel zebrafish model to predict organ toxicities in mammals. Toxicology Letters, 2013, 221, S233-S234.	0.8	Ο
34	In Vitro to in Vivo Extrapolation and Physiologically Based Modeling of Cytochrome P450 Mediated Metabolism in Beagle Dog Gut Wall and Liver. Molecular Pharmaceutics, 2013, 10, 1388-1399.	4.6	19
35	Mass Spectrometry-Based Quantification of CYP Enzymes to Establish In Vitro/In Vivo Scaling Factors for Intestinal and Hepatic Metabolism in Beagle Dog. Pharmaceutical Research, 2012, 29, 1832-1842.	3.5	29
36	Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience. Toxicology and Applied Pharmacology, 2012, 259, 355-365.	2.8	15

STEPHEN M FOWLER

#	Article	IF	CITATIONS
37	Nonclinical Pharmacokinetics of Oseltamivir and Oseltamivir Carboxylate in the Central Nervous System. Antimicrobial Agents and Chemotherapy, 2009, 53, 4753-4761.	3.2	28
38	A single-center, open-label, one-sequence study of dalcetrapib coadministered with ketoconazole, and an in vitro study of the S-methyl metabolite of dalcetrapib. Clinical Therapeutics, 2009, 31, 586-599.	2.5	24
39	<i>In vitro</i> and <i>in vivo</i> assessment of the effect of dalcetrapib on a panel of CYP substrates. Current Medical Research and Opinion, 2009, 25, 891-902.	1.9	23
40	In Vitro Evaluation of Reversible and Irreversible Cytochrome P450 Inhibition: Current Status on Methodologies and their Utility for Predicting Drug–Drug Interactions. AAPS Journal, 2008, 10, 410-424.	4.4	153
41	Comments on "Anti-Influenza Prodrug Oseltamivir Is Activated by Carboxylesterase Human Carboxylesterase 1, and the Activation Is Inhibited by Antiplatelet Agent Clopidogrel― Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 422-423.	2.5	9
42	CYP3A4 Active Site Volume Modification by Mutagenesis of Leucine 211. Drug Metabolism and Disposition, 2002, 30, 452-456.	3.3	29
43	Amino Acid 305 Determines Catalytic Center Accessibility in CYP3A4â€. Biochemistry, 2000, 39, 4406-4414.	2.5	38
44	Cytochrome P-450cam monooxygenase can be redesigned to catalyse the regioselective aromatic hydroxylation of diphenylmethane. Journal of the Chemical Society Chemical Communications, 1994, ,	2.0	25

hydroxyl 2761.

4