
Beth Burgwyn Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probiotic Effects of Lactobacillus paracasei 28.4 to Inhibit Streptococcus mutans in a Gellan-Based Formulation. Probiotics and Antimicrobial Proteins, 2021, 13, 506-517.	1.9	9
2	Current and promising pharmacotherapeutic options for candidiasis. Expert Opinion on Pharmacotherapy, 2021, 22, 887-888.	0.9	12
3	Thioredoxin Reductase Is a Valid Target for Antimicrobial Therapeutic Development Against Gram-Positive Bacteria. Frontiers in Microbiology, 2021, 12, 663481.	1.5	28
4	The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 700305.	1.8	13
5	A Substituted Diphenyl Amide Based Novel Scaffold Inhibits Virulence in a Infection Model. Frontiers in Microbiology, 2021, 12, 723133.	1.5	Ο
6	Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Frontiers in Microbiology, 2020, 11, 1605.	1.5	12
7	The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Frontiers in Cellular and Infection Microbiology, 2020, 10, 397.	1.8	31
8	Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. Journal of Microbiology, 2020, 58, 431-444.	1.3	10
9	The monoclonal antibody Ca37, developed against Candida albicans alcohol dehydrogenase, inhibits the yeast in vitro and in vivo. Scientific Reports, 2020, 10, 9206.	1.6	15
10	<scp><i>Caenorhabditis elegans</i></scp> mounts a p38 <scp>MAPK</scp> pathwayâ€mediated defence to <i>Cutibacterium acnes</i> infection. Cellular Microbiology, 2020, 22, e13234.	1.1	13
11	SPT20 Regulates the Hog1-MAPK Pathway and Is Involved in Candida albicans Response to Hyperosmotic Stress. Frontiers in Microbiology, 2020, 11, 213.	1.5	8
12	Development of Probiotic Formulations for Oral Candidiasis Prevention: Gellan Gum as a Carrier To Deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	22
13	The Anti-virulence Efficacy of 4-(1,3-Dimethyl-2,3-Dihydro-1H-Benzimidazol-2-yl)Phenol Against Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 1557.	1.5	14
14	A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16529-16534.	3.3	117
15	Auranofin Releasing Antibacterial and Antibiofilm Polyurethane Intravascular Catheter Coatings. Frontiers in Cellular and Infection Microbiology, 2019, 9, 37.	1.8	28
16	Rapid Isolation and Concentration of Pathogenic Fungi Using Inertial Focusing on a Chip-Based Platform. Frontiers in Cellular and Infection Microbiology, 2019, 9, 27.	1.8	29
17	Antibacterial Properties of Four Novel Hit Compounds from a Methicillin-Resistant <i>Staphylococcus aureus–Caenorhabditis elegans</i> High-Throughput Screen. Microbial Drug Resistance, 2018, 24, 666-674.	0.9	25
18	Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis elegans. Microbial Pathogenesis, 2018, 117, 80-87.	1.3	39

#	Article	IF	CITATIONS
19	Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling, 2018, 34, 212-225.	0.8	76
20	A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 2018, 556, 103-107.	13.7	307
21	Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of <i>Staphylococcus aureus</i> . Future Medicinal Chemistry, 2018, 10, 283-296.	1.1	46
22	Anti-Candida albicans Activity of Thiazolylhydrazone Derivatives in Invertebrate and Murine Models. Journal of Fungi (Basel, Switzerland), 2018, 4, 134.	1.5	17
23	Galleria mellonella experimental model for bat fungal pathogen Pseudogymnoascus destructans and human fungal pathogen Pseudogymnoascus pannorum. Virulence, 2018, 9, 1539-1547.	1.8	8
24	Vulnerability of long-term care facility residents to <i>Clostridium difficile</i> infection due to microbione disruptions. Future Microbiology, 2018, 13, 1537-1547.	1.0	9
25	Pathogenesis of the Candida parapsilosis Complex in the Model Host Caenorhabditis elegans. Genes, 2018, 9, 401.	1.0	18
26	Butenafine and analogues: An expeditious synthesis and cytotoxicity and antifungal activities. Journal of Advanced Research, 2018, 14, 81-91.	4.4	8
27	<i>SDH2</i> is involved in proper hypha formation and virulence in <i>Candida albicans</i> . Future Microbiology, 2018, 13, 1141-1156.	1.0	13
28	In vivo and in vitro activity of a bis-arylidenecyclo-alkanone against fluconazole-susceptible and -resistant isolates of Candida albicans. Journal of Global Antimicrobial Resistance, 2018, 14, 287-293.	0.9	9
29	Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of <i>Staphylococcus aureus</i> . Future Medicinal Chemistry, 2018, 10, 1319-1331.	1.1	13
30	Synergistic Efficacy of Aedes aegypti Antimicrobial Peptide Cecropin A2 and Tetracycline against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	56
31	Heterocycle Thiazole Compounds Exhibit Antifungal Activity through Increase in the Production of Reactive Oxygen Species in the Cryptococcus neoformans-Cryptococcus gattii Species Complex. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	18
32	The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Scientific Reports, 2017, 7, 11040.	1.6	34
33	Activity of a novel protonophore against methicillin-resistantStaphylococcus aureus. Future Medicinal Chemistry, 2017, 9, 1401-1411.	1.1	15
34	Histone acetyltransferase encoded byNGG1is required for morphological conversion and virulence ofCandida albicans. Future Microbiology, 2017, 12, 1497-1510.	1.0	8
35	Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PLoS ONE, 2017, 12, e0173332.	1.1	70
36	Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant <i>Staphylococcus aureus</i> and potentiates the activity of gentamicin. Future Medicinal Chemistry, 2016, 8, 1941-1952.	1.1	9

BETH BURGWYN FUCHS

#	Article	IF	CITATIONS
37	Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Medicinal Chemistry, 2016, 8, 117-132.	1.1	57
38	NH125 kills methicillin-resistant <i>Staphylococcus aureus</i> persisters by lipid bilayer disruption. Future Medicinal Chemistry, 2016, 8, 257-269.	1.1	36
39	Micafungin Elicits an Immunomodulatory Effect in Galleria mellonella and Mice. Mycopathologia, 2016, 181, 17-25.	1.3	18
40	Repurposing Salicylanilide Anthelmintic Drugs to Combat Drug Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0124595.	1.1	123
41	Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS ONE, 2015, 10, e0127640.	1.1	57
42	Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis. PLoS ONE, 2015, 10, e0131700.	1.1	51
43	A Multi-Host Approach for the Systematic Analysis of Virulence Factors in <i>Cryptococcus neoformans</i> . Journal of Infectious Diseases, 2015, 211, 298-305.	1.9	45
44	Insect-Derived Cecropins Display Activity against Acinetobacter baumannii in a Whole-Animal High-Throughput Caenorhabditis elegans Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1728-1737.	1.4	52
45	Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and <i>In Vivo</i> Impact in Infected Galleria mellonella Larvae. Antimicrobial Agents and Chemotherapy, 2015, 59, 6581-6587.	1.4	106
46	Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5203-5207.	1.0	14
47	A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0128576.	1.1	32
48	Whole Animal Automated Platform for Drug Discovery against Multi-Drug Resistant Staphylococcus aureus. PLoS ONE, 2014, 9, e89189.	1.1	85
49	Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clinical Microbiology Reviews, 2014, 27, 490-526.	5.7	254
50	The Role of Candida albicans SPT20 in Filamentation, Biofilm Formation and Pathogenesis. PLoS ONE, 2014, 9, e94468.	1.1	27
51	Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans. PLoS ONE, 2013, 8, e54387.	1.1	29
52	Selecting an Invertebrate Model Host for the Study of Fungal Pathogenesis. PLoS Pathogens, 2012, 8, e1002451.	2.1	69
53	Galleria mellonella are Resistant to Pneumocystis murina Infection. Mycopathologia, 2011, 171, 273-277.	1.3	7
54	Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes and Infection, 2010, 12, 488-496.	1.0	99

#	Article	IF	CITATIONS
55	Methods for using <i>Galleria mellonella</i> as a model host to study fungal pathogenesis. Virulence, 2010, 1, 475-482.	1.8	290
56	Our Paths Might Cross: the Role of the Fungal Cell Wall Integrity Pathway in Stress Response and Cross Talk with Other Stress Response Pathways. Eukaryotic Cell, 2009, 8, 1616-1625.	3.4	209
57	Susceptibility of Cryptococcus neoformans to Photodynamic Inactivation Is Associated with Cell Wall Integrity. Antimicrobial Agents and Chemotherapy, 2007, 51, 2929-2936.	1.4	73
58	Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay. PLoS Pathogens, 2007, 3, e18.	2.1	285
59	The Temperature-Sensitive Role of Cryptococcus neoformans ROM2 in Cell Morphogenesis. PLoS ONE, 2007, 2, e368.	1.1	18
60	Using non-mammalian hosts to study fungal virulence and host defense. Current Opinion in Microbiology, 2006, 9, 346-351.	2.3	144