
Liberato Berrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11155964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic strategies to fight COVIDâ€19: Which is the <i>status artis</i> ?. British Journal of Pharmacology, 2022, 179, 2128-2148.	5.4	33
2	<i>ABCA1, TCF7, NFATC1, PRKCZ,</i> and <i>PDGFA</i> DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome <i>via</i> network analysis. Epigenetics, 2022, 17, 547-563.	2.7	9
3	Current and future therapeutic perspective in chronic heart failure. Pharmacological Research, 2022, 175, 106035.	7.1	31
4	The Reporting Frequency of Ketoacidosis Events with Dapagliflozin from the European Spontaneous Reporting System: The DAPA-KETO Study. Pharmaceuticals, 2022, 15, 286.	3.8	7
5	Deficit of glucocorticoidâ€induced leucine zipper amplifies angiotensinâ€induced cardiomyocyte hypertrophy and diastolic dysfunction. Journal of Cellular and Molecular Medicine, 2021, 25, 217-228.	3.6	7
6	The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Frontiers in Pharmacology, 2021, 12, 667254.	3.5	39
7	Neuron-specific enolase serum levels in COVID-19 are related to the severity of lung injury. PLoS ONE, 2021, 16, e0251819.	2.5	15
8	Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells, 2021, 10, 2155.	4.1	4
9	In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Communications Biology, 2021, 4, 1146.	4.4	15
10	Sodium-Glucose Cotransporter 2 Inhibitors and Heart Failure: A Bedside-to-Bench Journey. Frontiers in Cardiovascular Medicine, 2021, 8, 810791.	2.4	12
11	Angiotensin II and angiotensin 1–7: which is their role in atrial fibrillation?. Heart Failure Reviews, 2020, 25, 367-380.	3.9	37
12	Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data. Pharmaceuticals, 2020, 13, 258.	3.8	6
13	Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Scientific Reports, 2020, 10, 12250.	3.3	25
14	Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7927.	4.1	27
15	Renin-Angiotensin System and Coronavirus Disease 2019: A Narrative Review. Frontiers in Cardiovascular Medicine, 2020, 7, 143.	2.4	35
16	Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacological Research, 2020, 157, 104781.	7.1	74
17	Formulation and Characterization of Solid Lipid Nanoparticles Loading RF22-c, a Potent and Selective 5-LO Inhibitor, in a Monocrotaline-Induced Model of Pulmonary Hypertension. Frontiers in Pharmacology, 2020, 11, 83.	3.5	14
18	Quinolones-Induced Musculoskeletal, Neurological, and Psychiatric ADRs: A Pharmacovigilance Study Based on Data From the Italian Spontaneous Reporting System. Frontiers in Pharmacology, 2020, 11, 428	3.5	22

#	Article	IF	CITATIONS
19	Atrial myxomas arise from multipotent cardiac stem cells. European Heart Journal, 2020, 41, 4332-4345.	2.2	51
20	Current pharmacological treatments for COVIDâ€19: What's next?. British Journal of Pharmacology, 2020, 177, 4813-4824.	5.4	210
21	The European clinical trials regulation (No 536/2014): changes and challenges. Expert Review of Clinical Pharmacology, 2019, 12, 1027-1032.	3.1	9
22	The New Paradigms in Clinical Research: From Early Access Programs to the Novel Therapeutic Approaches for Unmet Medical Needs. Frontiers in Pharmacology, 2019, 10, 111.	3.5	31
23	Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	18
24	Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific Reports, 2018, 8, 2961.	3.3	61
25	Doxorubicin targets multiple players: A new view of an old problem. Pharmacological Research, 2018, 127, 4-14.	7.1	123
26	lmatinib mesylate-induced cardiomyopathy involves resident cardiac progenitors. Pharmacological Research, 2018, 127, 15-25.	7.1	14
27	Doxorubicin Cardiotoxicity: Multiple Targets and Translational Perspectives. , 2018, , .		3
28	Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	237
29	Lung Mesenchymal Stem Cells Ameliorate Elastase-Induced Damage in an Animal Model of Emphysema. Stem Cells International, 2018, 2018, 1-10.	2.5	16
30	Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc. International Journal of Cardiology, 2018, 268, 179-186.	1.7	47
31	Neuropsychiatric clinical manifestations in elderly patients treated with hydroxychloroquine: a review article. Inflammopharmacology, 2018, 26, 1141-1149.	3.9	58
32	Biosimilars in the European Union from comparability exercise to real world experience: What we achieved and what we still need to achieve. Pharmacological Research, 2017, 119, 265-271.	7.1	10
33	Effects of ranolazine in a model of doxorubicinâ€induced left ventricle diastolic dysfunction. British Journal of Pharmacology, 2017, 174, 3696-3712.	5.4	73
34	Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. British Journal of Pharmacology, 2017, 174, 4070-4086.	5.4	58
35	Results of the safety run-in part of the METAL (METformin in Advanced Lung cancer) study: a multicentre, open-label phase l–II study of metformin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung cancer. ESMO Open, 2017, 2, e000132.	4.5	61
36	Strengths, weaknesses and future challenges of biosimilars' development. An opinion on how to improve the knowledge and use of biosimilars in clinical practice. Pharmacological Research, 2017, 126, 138-142.	7.1	21

#	Article	IF	CITATIONS
37	Safety Profile of Anticancer and Immune-Modulating Biotech Drugs Used in a Real World Setting in Campania Region (Italy): BIO-Cam Observational Study. Frontiers in Pharmacology, 2017, 8, 607.	3.5	33
38	Upregulation of TH/IL-17 Pathway-Related Genes in Human Coronary Endothelial Cells Stimulated with Serum of Patients with Acute Coronary Syndromes. Frontiers in Cardiovascular Medicine, 2017, 4, 1.	2.4	28
39	Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	4.0	255
40	Disclosing negative trial results – procedure. Expert Review of Clinical Pharmacology, 2016, 9, 1517-1519.	3.1	1
41	Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction. International Journal of Cardiology, 2016, 217, 69-79.	1.7	32
42	Campania Region (Italy) spontaneous reporting system and preventability assessment through a case-by-case approach: a pilot study on psychotropic drugs. Expert Opinion on Drug Safety, 2016, 15, 9-15.	2.4	36
43	Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology, 2016, 2, 2.	1.7	48
44	SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology, 2016, 205, 99-110.	1.7	114
45	MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget, 2016, 7, 62312-62326.	1.8	61
46	SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. International Journal of Cardiology, 2015, 189, 30-44.	1.7	65
47	A Multicenter, Open-Label Phase II Study of Metformin With Erlotinib in Second-Line Therapy of Stage IV Non–Small-Cell Lung Cancer Patients: Treatment Rationale and Protocol Dynamics of the METAL Trial. Clinical Lung Cancer, 2015, 16, 57-59.	2.6	16
48	AXL is an oncotarget in human colorectal cancer. Oncotarget, 2015, 6, 23281-23296.	1.8	55
49	Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clinical Science, 2014, 127, 615-634.	4.3	25
50	Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology, 2013, 108, 334.	5.9	122
51	Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury. International Journal of Cardiology, 2013, 168, 3370-3380.	1.7	12
52	Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multiâ€ŧargeted kinase inhibitors in pimasertibâ€resistant human lung and colorectal cancer cells. International Journal of Cancer, 2013, 133, 2089-2101.	5.1	81
53	Increased TGF-α as a Mechanism of Acquired Resistance to the Anti-EGFR Inhibitor Cetuximab through EGFR–MET Interaction and Activation of MET Signaling in Colon Cancer Cells. Clinical Cancer Research, 2013, 19, 6751-6765.	7.0	130
54	Stem Cell Therapy for Arterial Restenosis: Potential Parameters Contributing to the Success of Bone Marrow-Derived Mesenchymal Stromal Cells. Cardiovascular Drugs and Therapy, 2012, 26, 9-21.	2.6	24

#	Article	IF	CITATIONS
55	DNA damage and repair in a model of rat vascular injury. Clinical Science, 2010, 118, 473-485.	4.3	10
56	Anthracycline Cardiomyopathy Is Mediated by Depletion of the Cardiac Stem Cell Pool and Is Rescued by Restoration of Progenitor Cell Function. Circulation, 2010, 121, 276-292.	1.6	239
57	Synergistic Antitumor Activity of Sorafenib in Combination with Epidermal Growth Factor Receptor Inhibitors in Colorectal and Lung Cancer Cells. Clinical Cancer Research, 2010, 16, 4990-5001.	7.0	79
58	Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries. Clinical Science, 2009, 116, 125-136.	4.3	2
59	Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 2008, 217, 789-799.	4.1	42
60	Myocardial Strain Analysis in a Doxorubicin-Induced Cardiomyopathy Model. Ultrasound in Medicine and Biology, 2008, 34, 370-378.	1.5	32
61	Role of periaqueductal grey prostaglandin receptors in formalin-induced hyperalgesia. European Journal of Pharmacology, 2006, 530, 40-47.	3.5	28
62	c-Myc Antisense Oligonucleotides Preserve Smooth Muscle Differentiation and Reduce Negative Remodelling following Rat Carotid Arteriotomy. Journal of Vascular Research, 2005, 42, 214-225.	1.4	21
63	Absence of Inducible Nitric Oxide Synthase Reduces Myocardial Damage During Ischemia Reperfusion in Streptozotocin-Induced Hyperglycemic Mice. Diabetes, 2004, 53, 454-462.	0.6	85
64	M40403 prevents myocardial injury induced by acute hyperglycaemia in perfused rat heart. European Journal of Pharmacology, 2004, 497, 65-74.	3.5	24
65	Antinociceptive effect in mice of intraperitoneal <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor antagonists in the formalin test. European Journal of Pain, 2003, 7, 131-137.	2.8	49
66	Stenosis progression after surgical injury in Milan hypertensive rat carotid arteries. Cardiovascular Research, 2003, 60, 654-663.	3.8	9
67	Acute Hyperglycemia Induces Nitrotyrosine Formation and Apoptosis in Perfused Heart From Rat. Diabetes, 2002, 51, 1076-1082.	0.6	256
68	Interaction between vanilloid and glutamate receptors in the central modulation of nociception. European Journal of Pharmacology, 2002, 439, 69-75.	3.5	120
69	Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception. Pain, 2000, 85, 183-189.	4.2	76
70	The role of A3 adenosine receptors in central regulation of arterial blood pressure. British Journal of Pharmacology, 1998, 125, 437-440.	5.4	24
71	Endothelin-1 in periaqueductal gray area of mice induces analgesia via glutamatergic receptors. Pain, 1996, 65, 205-209.	4.2	19
72	Angiotensin II, via an action at AT1 receptors, may modulate the behavioural effects of ET-1 in conscious rats. Life Sciences, 1996, 59, PL355-PL358.	4.3	1

#	Article	IF	CITATIONS
73	Evidence that A2a and not A2b purinoceptors are coupled to production of nitric oxide in the central regulation of blood pressure. Environmental Toxicology and Pharmacology, 1996, 2, 327-329.	4.0	7
74	Hypothalamic paraventricular nucleus involvement in the pressor response to N-methyl-d-aspartic acid in the periaqueductal grey matter. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 157-60.	3.0	11
75	Nitric Oxide Participates in the Hypotensive Effect Induced by Adenosine A2 Subtype Receptor Stimulation. Journal of Cardiovascular Pharmacology, 1995, 25, 1001-1005.	1.9	20
76	Involvement of opioid receptors in N-Methyl-d-aspartate-induced arterial hypertension in periaqueductal gray matter. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 351, 87-92.	3.0	6
77	Effects of L-NAME on endothelin-1-induced barrel-rolling in periaqueductal gray area of rats. Life Sciences, 1995, 57, PL357-PL360.	4.3	7
78	Metabotropic and ionotropic glutamate receptors mediate opposite effects on periaqueductal gray matter. European Journal of Pharmacology, 1995, 285, 123-126.	3.5	14
79	Endothelin-1 in Rat Periaqueductal Gray Area Induces Hypertension Via Glutamatergic Receptors. Hypertension, 1995, 25, 507-510.	2.7	17
80	Periaqueductal gray area and cardiovascular function. Pharmacological Research, 1994, 29, 27-36.	7.1	36
81	Evidence that arcaine increases the cardiovascular effects into the periaqueductal gray area of anesthetized rats. Neuroscience Letters, 1994, 165, 164-166.	2.1	5
82	Involvement of periaqueductal gray area NMDA receptors in endothelin-induced behavioural effects. European Journal of Pharmacology, 1993, 250, 209-212.	3.5	9
83	Interactive role of l-glutamate and vasopressin, at the level of the PAG area, for cardiovascular tone and stereotyped behaviour. Brain Research, 1992, 597, 166-169.	2.2	23
84	Pregnenolone sulfate increases the convulsant potency of N-methyl-D-aspartate in mice. European Journal of Pharmacology, 1992, 219, 477-479.	3.5	61