Alessandro Giacomello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11152525/publications.pdf

Version: 2024-02-01

39 4,831 23 35 g-index

39 39 39 39 4660

39 39 39 4660 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in human-derived Cardiospheres. Scientific Reports, 2019, 9, 6644.	3.3	44
2	Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells. MRS Communications, 2017, 7, 496-501.	1.8	6
3	A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres). Mathematical Medicine and Biology, 2017, 35, dqw022.	1.2	8
4	EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers, 2017, 9, 98.	3.7	62
5	Exosomes isolation protocols facts and artifacts for cardiac regeneration. Frontiers in Bioscience - Scholar, 2016, 8, 303-311.	2.1	11
6	Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture. BioImpacts, 2016, 6, 15-24.	1.5	26
7	Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.	11.4	265
8	Engineered Electrical Conduction TractÂRestores Conduction in CompleteÂHeart Block. Journal of the American College of Cardiology, 2014, 64, 2575-2585.	2.8	24
9	Serum and supplement optimization for <scp>EU GMP</scp> â€compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 2014, 18, 624-634.	3.6	41
10	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	3.6	34
11	Biochemistry and biology: Heart-to-heart to investigate cardiac progenitor cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2459-2469.	2.4	7
12	Analysis of Pregnancy-Associated Plasma Protein A Production in Human Adult Cardiac Progenitor Cells. BioMed Research International, 2013, 2013, 1-8.	1.9	15
13	From Ontogenesis to Regeneration. Progress in Molecular Biology and Translational Science, 2012, 111, 109-137.	1.7	22
14	Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts. Methods in Molecular Biology, 2012, 879, 327-338.	0.9	57
15	TGF \hat{I}^2 -Dependent Epithelial-to-Mesenchymal Transition Is Required to Generate Cardiospheres from Human Adult Heart Biopsies. Stem Cells and Development, 2012, 21, 3081-3090.	2.1	34
16	Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012, 33, 1782-1790.	11.4	347
17	Bone marrowâ€derived cells can acquire cardiac stem cells properties in damaged heart. Journal of Cellular and Molecular Medicine, 2011, 15, 63-71.	3.6	26
18	Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials, 2011, 32, 9271-9281.	11.4	59

#	Article	IF	Citations
19	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
20	Isolation and Expansion of Cardiosphereâ€Derived Stem Cells. Current Protocols in Stem Cell Biology, 2011, 16, 2C.3.1.	3.0	12
21	Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study. PLoS ONE, 2011, 6, e25669.	2.5	70
22	Evidence for the Existence of Resident Cardiac Stem Cells. , 2011, , 131-147.		O
23	Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice. Circulation Research, 2010, 106, 971-980.	4.5	609
24	c-kit cardiac progenitor cells: What is their potential? Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E78; author reply E79.	7.1	8
25	Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovascular Research, 2009, 82, 411-420.	3.8	104
26	lon Cyclotron Resonance as a Tool in Regenerative Medicine. Electromagnetic Biology and Medicine, 2008, 27, 127-133.	1.4	34
27	Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S9-S14.	3.3	94
28	Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens. Circulation, 2007, 115, 896-908.	1.6	1,074
29	Endogenous Cardiac Stem Cells. Progress in Cardiovascular Diseases, 2007, 50, 31-48.	3.1	229
30	Endogenous Cardiac Stem Cells. , 2007, , 83-100.		1
31	Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch–Nyhan disease. Neuroscience Letters, 2005, 375, 97-100.	2.1	26
32	Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart. Circulation Research, 2004, 95, 911-921.	4.5	1,374
33	Guanine nucleotide depletion triggers cell cycle arrest and apoptosis in human neuroblastoma cell lines. International Journal of Cancer, 2004, 108, 812-817.	5.1	34
34	Low levels of mycophenolic acid induce differentiation of human neuroblastoma cell lines. International Journal of Cancer, 2004, 112, 352-354.	5.1	8
35	Guanine Uptake by Human Erythrocytes. Advances in Experimental Medicine and Biology, 1991, 309A, 407-410.	1.6	O
36	Hypoxanthine-guanine exchange by intact human erythrocytes. Biochemistry, 1985, 24, 1306-1309.	2.5	14

#	Article	lF	CITATIONS
37	Purine Release by Human Erythrocytes. Advances in Experimental Medicine and Biology, 1984, 165 Pt A, 343-346.	1.6	0
38	Adenine-induced hypoxanthine release from IMP-enriched human erythrocytes. Biochimica Et Biophysica Acta - General Subjects, 1983, 756, 403-406.	2.4	1
39	Hypoxanthine uptake by human erythrocytes. FEBS Letters, 1979, 107, 203-204.	2.8	23