Marc J Ledoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11147233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Applied Catalysis A: General, 2005, 288, 203-210.	4.3	258
2	The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. Journal of Catalysis, 2001, 200, 400-410.	6.2	225
3	Silicon Carbide: A Novel Catalyst Support for Heterogeneous Catalysis. Cattech, 2001, 5, 226-246.	2.2	219
4	Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactionsl. Catalyst activation and stabilization: Reaction of n-hexane. Journal of Catalysis, 1992, 134, 383-398.	6.2	218
5	New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance. Journal of Catalysis, 1988, 114, 176-185.	6.2	207
6	Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS. Catalysis Today, 1995, 23, 251-267.	4.4	202
7	Carbon nanofiber supported palladium catalyst for liquid-phase reactions. Journal of Molecular Catalysis A, 2001, 170, 155-163.	4.8	168
8	Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catalysis Today, 2002, 76, 11-32.	4.4	138
9	Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon, 2003, 41, 2131-2139.	10.3	123
10	lsomerization of n-Heptane on an Oxygen-Modified Molybdenum Carbide Catalyst. Industrial & Engineering Chemistry Research, 1994, 33, 1657-1664.	3.7	122
11	New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 2003, 216, 333-342.	6.2	115
12	Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. Physical Chemistry Chemical Physics, 2002, 4, 514-521.	2.8	106
13	Microstructure and Characterization of a Highly Selective Catalyst for the Isomerization of Alkanes: A Molybdenum Oxycarbide. Journal of Catalysis, 2000, 190, 92-103.	6.2	99
14	Silicon carbide foam as a porous support platform for catalytic applications. New Journal of Chemistry, 2016, 40, 4285-4299.	2.8	92
15	Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint. Applied Catalysis A: General, 2001, 217, 205-217.	4.3	87
16	High-Yield Butane to Maleic Anhydride Direct Oxidation on Vanadyl Pyrophosphate Supported on Heat-Conductive Materials: β-SiC, Si3N4, and BN. Journal of Catalysis, 2001, 203, 495-508.	6.2	81
17	Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catalysis Today, 1999, 53, 535-542.	4.4	68
18	High surface area silicon carbide doped with zirconium for use as catalyst support. Preparation, characterization and catalytic application. Applied Catalysis A: General, 1999, 180, 385-397.	4.3	62

Marc J Ledoux

#	Article	IF	CITATIONS
19	Preparation and characterization of SiC microtubes. Applied Catalysis A: General, 1999, 187, 255-268.	4.3	58
20	Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon. Journal of Catalysis, 1989, 115, 580-590.	6.2	53
21	Effect of the reaction temperature and hydrocarbon partial pressure on the activity of carbon-modified MoO3 for n-hexane isomerization. Applied Catalysis A: General, 1997, 149, 151-180.	4.3	44
22	Catalysis with carbides. Current Opinion in Solid State and Materials Science, 1996, 1, 96-100.	11.5	41
23	Part I. n-Butane dehydrogenation on unsupported carbon modified MoO3 (MoOxCy): effect of steam on the catalyst stability. Applied Catalysis A: General, 1999, 181, 157-170.	4.3	41
24	Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation. Applied Catalysis A: General, 2002, 234, 191-205.	4.3	40
25	Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catalysis Today, 2012, 189, 77-82.	4.4	38
26	Molybdenum oxycarbide isomerization catalysts for cleaner fuel production. Catalysis Today, 1996, 27, 145-150.	4.4	37
27	In situ TPO, TPD and XRD characterisation of a molybdenum oxycarbohydride catalyst for n-butane isomerisation. Applied Catalysis A: General, 2001, 215, 175-184.	4.3	33
28	Comparative Effect of Organosulfur Compounds on Catalysts for then-Heptane Isomerization Reaction at Medium Pressure: Mo2C-Oxygen-Modified, MoO3-Carbon-Modified, Pt/Î ³ -Al2O3, and Pt/β-Zeolite Catalysts. Industrial & Engineering Chemistry Research, 1996, 35, 672-682.	3.7	29
29	Cu–Y zeolite supported on silicon carbide for the vapour phase oxidative carbonylation of methanol to dimethyl carbonate. Green Chemistry, 2008, 10, 207-213.	9.0	28
30	Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires. Carbon, 2004, 42, 1395-1399.	10.3	27
31	Synthesis and characterization of platinum-rhodium supported on SiC and SiC doped with cerium: Catalytic activity for the automobile exhaust reactions. Applied Catalysis B: Environmental, 1994, 4, 45-63.	20.2	25
32	Selectiven-Butane Isomerization over High Specific Surface Area MoO3-Carbon-Modified Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 4166-4175.	3.7	25
33	Molybdenum oxycarbide hydrocarbon isomerization catalysts: cleaner fuels for the future. Catalysis Today, 1997, 35, 51-57.	4.4	25
34	High surface area submicrometer-sized β-SiC particles grown by shape memory synthesis method. Diamond and Related Materials, 2005, 14, 1353-1360.	3.9	25
35	On the role of hydrogen during the reduction–carburation of MoO3 into molybdenum oxycarbide. Journal of Molecular Catalysis A, 2000, 162, 317-334.	4.8	22
36	A new TiO2–β-SiC material for use as photocatalyst. Materials Letters, 2004, 58, 970-974.	2.6	22

Marc J Ledoux

#	Article	IF	CITATIONS
37	Synthesis and characterization of a new medium surface area TiO2–β-SiC material for use as photocatalyst. Journal of Materials Chemistry, 2004, 14, 1887-1895.	6.7	21
38	Title is missing!. Catalysis Letters, 1999, 61, 151-155.	2.6	18
39	Effect of the total activation pressure on the structural and catalytic performance of the SiC supported MoO3-carbon-modified catalyst for the n-heptane isomerization. Applied Catalysis A: General, 1997, 156, 131-149.	4.3	17
40	Pd/SiC Exhaust Gas Catalyst for Heavy-Duty Engines: Improvement of Catalytic Performances by Controlling the Location of the Active Phase on the Support. Topics in Catalysis, 2004, 30/31, 353-358.	2.8	14
41	Comparison of the Effects of Nitrogen Poisoning on Molybdenum Oxycarbide and Pt/β-Zeolite Catalysts in the Isomerization ofn-Heptane. Industrial & Engineering Chemistry Research, 1996, 35, 3302-3310.	3.7	13
42	A Comparative Study of the Influence of the Preparation on the Activity of NiMo and NiW Hydrodesulfurization (Hds) Catalysts. Bulletin Des Sociétés Chimiques Belges, 1987, 96, 855-864.	0.0	12
43	Characterization of a Catalytically Active Molybdenum Oxycarbide. Materials Research Society Symposia Proceedings, 1994, 368, 57.	0.1	1
44	High Surface Area Silicon Carbide Doped with Zirconium for use as Heterogeneous Catalyst Support. Materials Research Society Symposia Proceedings, 1996, 454, 35.	0.1	0
45	Preparation and characterization of SiC microfibers and Cr3C2 with medium specific surface area for catalytic applications. Studies in Surface Science and Catalysis, 1998, 118, 855-868.	1.5	0
46	Characterization of the deactivation of MoO3-carbon-modified supported on SiC for n-butane dehydrogenation reaction. Studies in Surface Science and Catalysis, 1999, 126, 163-170.	1.5	0
47	New Catalytic Phenomena on Nanostructured (Fibers and Tubes) Catalysts. ChemInform, 2003, 34, no.	0.0	0