Pietro Perona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11145522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 743-761.	13.9	2,582
2	One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28, 594-611.	13.9	1,947
3	Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36, 1532-1545.	13.9	1,685
4	Integral Channel Features. , 2009, , .		911
5	Pedestrian detection: A benchmark. , 2009, , .		909
6	Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1990, 7, 923.	1.5	814
7	Functional identification of an aggression locus in the mouse hypothalamus. Nature, 2011, 470, 221-226.	27.8	788
8	High-throughput ethomics in large groups of Drosophila. Nature Methods, 2009, 6, 451-457.	19.0	690
9	Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9596-9601.	7.1	636
10	Robust Face Landmark Estimation under Occlusion. , 2013, , .		511
11	The Fastest Pedestrian Detector in the West. , 2010, , .		428
12	Automated image-based tracking and its application in ecology. Trends in Ecology and Evolution, 2014, 29, 417-428.	8.7	407
13	Cascaded pose regression. , 2010, , .		383
14	Toward a Science of Computational Ethology. Neuron, 2014, 84, 18-31.	8.1	366
15	Objects predict fixations better than early saliency. Journal of Vision, 2008, 8, 18-18.	0.3	363
16	Evaluation of Features Detectors and Descriptors based on 3D Objects. International Journal of Computer Vision, 2007, 73, 263-284.	15.6	339
17	Automated monitoring and analysis of social behavior in Drosophila. Nature Methods, 2009, 6, 297-303.	19.0	316
18	What do we perceive in a glance of a real-world scene?. Journal of Vision, 2007, 7, 10.	0.3	312

#	Article	IF	CITATIONS
19	Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nature Methods, 2014, 11, 385-392.	19.0	288
20	Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila. Cell, 2014, 156, 221-235.	28.9	271
21	Computational Neuroethology: A Call to Action. Neuron, 2019, 104, 11-24.	8.1	271
22	Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5351-60.	7.1	248
23	Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits. Neuron, 2009, 64, 522-536.	8.1	246
24	Where is the sun?. Nature Neuroscience, 1998, 1, 183-184.	14.8	232
25	Visual Recognition with Humans in the Loop. Lecture Notes in Computer Science, 2010, , 438-451.	1.3	193
26	A common genetic target for environmental and heritable influences on aggressiveness in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5657-5663.	7.1	170
27	Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5232-5237.	7.1	150
28	Improved Bird Species Recognition Using Pose Normalized Deep Convolutional Nets. , 2014, , .		148
29	Automated multi-day tracking of marked mice for the analysis of social behaviour. Journal of Neuroscience Methods, 2013, 219, 10-19.	2.5	133
30	Multiclass recognition and part localization with humans in the loop. , 2011, , .		122
31	Decomposition of human motion into dynamics-based primitives with application to drawing tasks. Automatica, 2003, 39, 2085-2098.	5.0	113
32	From Google Maps to a fine-grained catalog of street trees. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135, 13-30.	11.1	104
33	Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression. Journal of Neuroscience, 2014, 34, 5971-5984.	3.6	102
34	Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila. Current Biology, 2015, 25, 1401-1415.	3.9	98
35	Pedestrian detection: A benchmark. , 2009, , .		96
36	Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli. Visual Cognition, 2005, 12, 893-924.	1.6	94

#	Article	IF	CITATIONS
37	The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice. ELife, 2021, 10, .	6.0	94
38	Cataloging Public Objects Using Aerial and Street-Level Images $\hat{a} \in "$ Urban Trees. , 2016, , .		85
39	Recursive 3-D Visual Motion Estimation Using Subspace Constraints. International Journal of Computer Vision, 1997, 22, 235-259.	15.6	77
40	Detecting Social Actions of Fruit Flies. Lecture Notes in Computer Science, 2014, , 772-787.	1.3	71
41	Local Shape from Mirror Reflections. International Journal of Computer Vision, 2005, 64, 31-67.	15.6	65
42	Preattentive Perception of Elementary Three-dimensional Shapes. Vision Research, 1996, 36, 2515-2529.	1.4	57
43	Homo economicus in visual search. Journal of Vision, 2009, 9, 31-31.	0.3	57
44	Learning Object Categories From Internet Image Searches. Proceedings of the IEEE, 2010, 98, 1453-1466.	21.3	57
45	Inter-expert and intra-expert reliability in sleep spindle scoring. Clinical Neurophysiology, 2015, 126, 1548-1556.	1.5	57
46	Early computation of shape and reflectance in the visual system. Nature, 1996, 379, 165-168.	27.8	55
47	Measuring and Predicting Object Importance. International Journal of Computer Vision, 2011, 91, 59-76.	15.6	55
48	How Food Controls Aggression in Drosophila. PLoS ONE, 2014, 9, e105626.	2.5	55
49	3D Photography Using Shadows in Dual-Space Geometry. International Journal of Computer Vision, 1999, 35, 129-149.	15.6	53
50	3D Reconstruction by Shadow Carving: Theory and Practical Evaluation. International Journal of Computer Vision, 2007, 71, 305-336.	15.6	49
51	A Simple Strategy for Detecting Moving Objects during Locomotion Revealed by Animal-Robot Interactions. Current Biology, 2012, 22, 1344-1350.	3.9	49
52	The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-Grained Categorization. International Journal of Computer Vision, 2014, 108, 3.	15.6	48
53	Mice in a labyrinth show rapid learning, sudden insight, and efficient exploration. ELife, 2021, 10, .	6.0	48
54	Causal feature learning: an overview. Behaviormetrika, 2017, 44, 137-164.	1.3	37

#	Article	IF	CITATIONS
55	Indexing in large scale image collections: Scaling properties and benchmark. , 2011, , .		34
56	Hybrid Generative-Discriminative Visual Categorization. International Journal of Computer Vision, 2008, 77, 239-258.	15.6	32
57	Some Objects Are More Equal Than Others: Measuring and Predicting Importance. Lecture Notes in Computer Science, 2008, , 523-536.	1.3	32
58	Geocoding of trees from street addresses and street-level images. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 125-136.	11.1	29
59	Shading and Stereo in Early Perception of Shape and Reflectance. Perception, 1997, 26, 519-529.	1.2	27
60	Local Analysis for 3D Reconstruction of Specular Surfaces — Part II. Lecture Notes in Computer Science, 2002, , 759-774.	1.3	26
61	What do reflections tell us about the shape of a mirror?. , 2004, , .		25
62	Vision of a Visipedia. Proceedings of the IEEE, 2010, 98, 1526-1534.	21.3	25
63	Computer Vision in the Operating Room: Opportunities and Caveats. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 2-10.	3.2	25
64	Non-Parametric Probabilistic Image Segmentation. , 2007, , .		22
65	Task Programming: Learning Data Efficient Behavior Representations. , 2021, , .		18
66	Learning slip behavior using automatic mechanical supervision. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	14
67	PRIMITIVES FOR HUMAN MOTION: A DYNAMICAL APPROACH. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 25-30.	0.4	11
68	Online, Real-Time Tracking Using a Category-to-Individual Detector. Lecture Notes in Computer Science, 2014, , 361-376.	1.3	10
69	Visipedia circa 2015. Pattern Recognition Letters, 2016, 72, 15-24.	4.2	9
70	Recovering Local Shape of a Mirror Surface from Reflection of a Regular Grid. Lecture Notes in Computer Science, 2004, , 468-481.	1.3	9
71	Speed versus accuracy in visual search: Optimal performance and neural architecture. Journal of Vision, 2015, 15, 9.	0.3	6
72	Generalized regressive motion: a visual cue to collision. Bioinspiration and Biomimetics, 2016, 11, 046008.	2.9	6

#	Article	IF	CITATIONS
73	Far and Yet Close: Multiple Viewpoints for the Perfect Portrait. Art and Perception, 2013, 1, 105-120.	0.5	5
74	Unsupervised learning of categorical segments in image collections. , 2008, , .		4
75	Seeing the trees, the forest, and much more. Communications of the ACM, 2010, 53, 106-106.	4.5	4
76	Movemes for Modeling Biological Motion Perception. , 2004, , 143-170.		3
77	Quantized response times are a signature of a neuronal bottleneck in decision. Frontiers in Computational Neuroscience, 2014, 8, 42.	2.1	2