Jyrki Lötjönen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11145303/publications.pdf

Version: 2024-02-01

97 3 papers cit

3,024 citations

186265 28 h-index 51 g-index

101 all docs

101 docs citations

times ranked

101

4634 citing authors

#	Article	lF	Citations
1	Synergistic associations of cognitive and motor impairments with functional outcome in covert cerebral small vessel disease. European Journal of Neurology, 2022, 29, 158-167.	3.3	10
2	Grey matter atrophy in patients with benign multiple sclerosis. Brain and Behavior, 2022, 12, .	2.2	8
3	Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity: The EarlyCause project. PLoS ONE, 2021, 16, e0245475.	2.5	9
4	Effects of White Matter Hyperintensities on Verbal Fluency in Healthy Older Adults and MCI/AD. Frontiers in Aging Neuroscience, 2021, 13, 614809.	3.4	3
5	Associations of cognitive reserve and psychological resilience with cognitive functioning in subjects with cerebral white matter hyperintensities. European Journal of Neurology, 2021, 28, 2622-2630.	3.3	12
6	A novel CT-based automated analysis method provides comparable results with MRI in measuring brain atrophy and white matter lesions. Neuroradiology, 2021, 63, 2035-2046.	2.2	6
7	Global Burden of Small Vessel Disease–Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke, 2020, 51, 170-178.	2.0	115
8	Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 606.	2.4	21
9	Detecting Amyloid Positivity in Elderly With Increased Risk of Cognitive Decline. Frontiers in Aging Neuroscience, 2020, 12, 228.	3.4	9
10	cCOG: A webâ€based cognitive test tool for detecting neurodegenerative disorders. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12083.	2.4	9
11	Evaluating 2-[18F]FDG-PET in differential diagnosis of dementia using a data-driven decision model. Neurolmage: Clinical, 2020, 27, 102267.	2.7	9
12	Gait Disturbances are Associated with Increased Cognitive Impairment and Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort. Journal of Alzheimer's Disease, 2020, 76, 1061-1070.	2.6	13
13	Selection of memory clinic patients for CSF biomarker assessment can be restricted to a quarter of cases by using computerized decision support, without compromising diagnostic accuracy. PLoS ONE, 2020, 15, e0226784.	2.5	7
14	Metabolic Profiles Help Discriminate Mild Cognitive Impairment from Dementia Stage in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 74, 277-286.	2.6	13
15	Evaluating severity of white matter lesions from computed tomography images with convolutional neural network. Neuroradiology, 2020, 62, 1257-1263.	2.2	8
16	Brain volumes in relation to loneliness and social competence in preadolescents born very preterm. Brain and Behavior, 2020, 10, e01640.	2.2	8
17	Prognostic value of complementary biomarkers of neurodegeneration in a mixed memory clinic cohort. PeerJ, 2020, 8, e9498.	2.0	5
18	The Association Between Distinct Frontal Brain Volumes and Behavioral Symptoms in Mild Cognitive Impairment, Alzheimer's Disease, and Frontotemporal Dementia. Frontiers in Neurology, 2019, 10, 1059.	2.4	37

#	Article	lF	CITATIONS
19	Predicting Development of Alzheimer's Disease in Patients with Shunted Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2019, 71, 1233-1243.	2.6	28
20	Association between Deep Gray Matter Changes and Neurocognitive Function in Mild Cognitive Impairment and Alzheimer's Disease: A Tensor-Based Morphometric MRI Study. Dementia and Geriatric Cognitive Disorders, 2019, 48, 68-78.	1.5	8
21	Midlife Insulin Resistance as a Predictor for Late-Life Cognitive Function and Cerebrovascular Lesions. Journal of Alzheimer's Disease, 2019, 72, 215-228.	2.6	20
22	Prediction models for dementia and neuropathology in the oldest old: the Vantaa $85+$ cohort study. Alzheimer's Research and Therapy, $2019,11,11.$	6.2	37
23	Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimer's Research and Therapy, 2019, 11, 53.	6.2	75
24	Thalamic Atrophy Without Whole Brain Atrophy Is Associated With Absence of 2-Year NEDA in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 459.	2.4	23
25	Impact of a clinical decision support tool on prediction of progression in early-stage dementia: a prospective validation study. Alzheimer's Research and Therapy, 2019, 11, 25.	6.2	23
26	Multivariate Prediction of Hippocampal Atrophy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 1453-1468.	2.6	2
27	Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage: Clinical, 2019, 22, 101711.	2.7	35
28	Impact of a Clinical Decision Support Tool on Dementia Diagnostics in Memory Clinics: The PredictND Validation Study. Current Alzheimer Research, 2019, 16, 91-101.	1.4	23
29	White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study. Dementia and Geriatric Cognitive Disorders, 2019, 48, 297-307.	1.5	17
30	Predicting Global Cognitive Decline in the General Population Using the Disease State Index. Frontiers in Aging Neuroscience, 2019, 11, 379.	3.4	8
31	Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis. Dementia and Geriatric Cognitive Disorders Extra, 2018, 8, 51-59.	1.3	19
32	Validation of prognostic biomarker scores for predicting progression of dementia in patients with amnestic mild cognitive impairment. Nuclear Medicine Communications, 2018, 39, 297-303.	1.1	6
33	Longitudinal changes in the brain in mild cognitive impairment: a magnetic resonance imaging study using the visual rating method and tensor-based morphometry. Acta Radiologica, 2018, 59, 973-979.	1.1	3
34	Computerâ€essisted prediction of clinical progression in the earliest stages of AD. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 726-736.	2.4	8
35	Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier. Frontiers in Aging Neuroscience, 2018, 10, 111.	3.4	29
36	Evaluating combinations of diagnostic tests to discriminate different dementia types. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 509-518.	2.4	19

#	Article	IF	Citations
37	Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting. Neurolmage: Clinical, 2017, 15, 613-624.	2.7	38
38	Association Between Later Life Lifestyle Factors and Alzheimer's Disease Biomarkers in Non-Demented Individuals: A Longitudinal Descriptive Cohort Study. Journal of Alzheimer's Disease, 2017, 60, 1387-1395.	2.6	24
39	Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging. PLoS ONE, 2017, 12, e0188152.	2.5	25
40	Integrating Biomarkers for Underlying Alzheimer's Disease in Mild Cognitive Impairment in Daily Practice: Comparison of a Clinical Decision Support System with Individual Biomarkers. Journal of Alzheimer's Disease, 2016, 50, 261-270.	2.6	14
41	Using the Disease State Fingerprint Tool for Differential Diagnosis of Frontotemporal Dementia and Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders Extra, 2016, 6, 313-329.	1.3	12
42	Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage: Clinical, 2016, 11, 435-449.	2.7	137
43	Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2016, 158, 2311-2319.	1.7	21
44	Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study. Journal of Alzheimer's Disease, 2016, 55, 1055-1067.	2.6	27
45	Evaluation of motion-correction methods for dual-gated cardiac positron emission tomography/computed tomography imaging. Nuclear Medicine Communications, 2016, 37, 956-968.	1.1	5
46	Visual rating method and tensor-based morphometry in the diagnosis of mild cognitive impairment and Alzheimer's disease: a comparative magnetic resonance imaging study. Acta Radiologica, 2016, 57, 348-355.	1.1	9
47	Differential Dementia Diagnosis on Incomplete Data with Latent Trees. Lecture Notes in Computer Science, 2016, , 44-52.	1.3	1
48	Generalizability of the Disease State Index Prediction Model for Identifying Patients Progressing from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 79-92.	2.6	31
49	Predicting Progression from Cognitive Impairment to Alzheimer's Disease with the Disease State Index. Current Alzheimer Research, 2015, 12, 69-79.	1.4	22
50	Robust whole-brain segmentation: Application to traumatic brain injury. Medical Image Analysis, 2015, 21, 40-58.	11.6	146
51	Consistent and robust 4D whole-brain segmentation: Application to traumatic brain injury., 2014,,.		3
52	Extended boundary shift integral. , 2014, , .		1
53	Comparing Predictors of Conversion to Alzheimer's Disease Using the Disease State Index. Neurodegenerative Diseases, 2014, 13, 200-202.	1.4	8
54	Automatic quantification of CT images for traumatic brain injury. , 2014, , .		2

#	Article	IF	CITATIONS
55	Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis. PLoS ONE, 2014, 9, e96426.	2.5	68
56	The PredictAD project: development of novel biomarkers and analysis software for early diagnosis of the Alzheimer's disease. Interface Focus, 2013, 3, 20120072.	3.0	26
57	Disease State Fingerprint in Frontotemporal Degeneration with Reference to Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2013, 35, 727-739.	2.6	18
58	Predicting AD Conversion: Comparison between Prodromal AD Guidelines and Computer Assisted PredictAD Tool. PLoS ONE, 2013, 8, e55246.	2.5	31
59	A MATLAB toolbox for classification and visualization of heterogenous multi-scale human data using the Disease State Fingerprint method. Studies in Health Technology and Informatics, 2013, 189, 77-82.	0.3	4
60	Hippocampal atrophy rate using an expectation maximization classifier with a disease-specific prior. , 2012, , .		1
61	Application of the PredictAD Software Tool to Predict Progression in Patients with Mild Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 2012, 34, 344-350.	1.5	10
62	Optimizing the Diagnosis of Early Alzheimer's Disease in Mild Cognitive Impairment Subjects. Journal of Alzheimer's Disease, 2012, 32, 969-979.	2.6	32
63	Multi-class brain segmentation using atlas propagation and EM-based refinement. , 2012, , .		20
64	Hippocampal atrophy in Alzheimer's disease. Neurodegenerative Disease Management, 2012, 2, 197-209.	2.2	2
65	Combination of Biomarkers: PET [¹⁸ F]Flutemetamol Imaging and Structural MRI in Dementia and Mild Cognitive Impairment. Neurodegenerative Diseases, 2012, 10, 246-249.	1.4	52
66	Software Tool for Improved Prediction of Alzheimer's Disease. Neurodegenerative Diseases, 2012, 10, 149-152.	1.4	14
67	Improved Classification of Alzheimer's Disease Data via Removal of Nuisance Variability. PLoS ONE, 2012, 7, e31112.	2.5	46
68	Structural MRI in Frontotemporal Dementia: Comparisons between Hippocampal Volumetry, Tensor-Based Morphometry and Voxel-Based Morphometry. PLoS ONE, 2012, 7, e52531.	2.5	49
69	Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Medical Image Analysis, 2012, 16, 819-830.	11.6	50
70	Design and Application of a Generic Clinical Decision Support System for Multiscale Data. IEEE Transactions on Biomedical Engineering, 2012, 59, 234-240.	4.2	40
71	Heterogeneous Biological Network Visualization System: Case Study in Context of Medical Image Data. Advances in Experimental Medicine and Biology, 2012, 736, 95-118.	1.6	0
72	Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease. Neurolmage, 2011, 56, 185-196.	4.2	109

#	Article	IF	CITATIONS
73	Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease. NeuroImage, 2011, 56, 1134-1144.	4.2	88
74	A Disease State Fingerprint for Evaluation of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 163-176.	2.6	75
75	Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease. PLoS ONE, 2011, 6, e25446.	2.5	240
76	Serum Lipidomics Meets Cardiac Magnetic Resonance Imaging: Profiling of Subjects at Risk of Dilated Cardiomyopathy. PLoS ONE, 2011, 6, e15744.	2.5	28
77	Improved generation of probabilistic atlases for the expectation maximization classification. , 2011, , .		4
78	A Comprehensive Panel of Three-Dimensional Models for Studies of Prostate Cancer Growth, Invasion and Drug Responses. PLoS ONE, 2010, 5, e10431.	2.5	299
79	Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI. Neurolmage, 2010, 52, 109-118.	4.2	122
80	Methods of Artificial Enlargement of the Training Set for Statistical Shape Models. IEEE Transactions on Medical Imaging, 2008, 27, 1643-1654.	8.9	43
81	Dynamic Probabilistic Atlas of Functional Brain Regions for Transcranial Magnetic Stimulation. Lecture Notes in Computer Science, 2008, 11, 543-550.	1.3	2
82	Shape variability of the human striatum—Effects of age and gender. NeuroImage, 2007, 34, 85-93.	4.2	38
83	Model-Based Segmentation of Reconstructed Dental X-Ray Volumes. , 2006, , .		1
84	Artificially Enlarged Training Set in Image Segmentation. Lecture Notes in Computer Science, 2006, 9, 75-82.	1.3	7
85	Circadian activity rhythm in demented and nonâ€demented nursingâ€home residents measured by telemetric actigraphy. Journal of Sleep Research, 2005, 14, 61-68.	3.2	72
86	Correction of Motion Artifacts From Cardiac Cine Magnetic Resonance Images 1. Academic Radiology, 2005, 12, 1273-1284.	2.5	14
87	Reconstruction of 3-D Head Geometry From Digitized Point Sets: An Evaluation Study. IEEE Transactions on Information Technology in Biomedicine, 2004, 8, 377-386.	3.2	17
88	Construction of patient-specific surface models from MR images: application to bioelectromagnetism. Computer Methods and Programs in Biomedicine, 2003, 72, 167-178.	4.7	11
89	A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion. Medical Image Analysis, 2003, 7, 377-389.	11.6	50
90	Individualized Geometric Model from Unorganized 3-D Points: An Application to Thorax Modeling. Lecture Notes in Computer Science, 2003, , 91-98.	1.3	1

#	Article	IF	CITATIONS
91	Automatic sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago WristCare. Sleep, 2003, 26, 86-90.	1.1	38
92	Model Library for Deformable Model-Based Segmentation of 3-D Brain MR-Images. Lecture Notes in Computer Science, 2002, , 540-547.	1.3	5
93	A New Method for the Registration of Cardiac PET and MR Images Using Deformable Model Based Segmentation of the Main Thorax Structures. Lecture Notes in Computer Science, 2001, , 557-564.	1.3	9
94	A 3-D Model-Based Approach for the PET-Functional and MR-Anatomical Cardiac Imaging Data Fusion. Lecture Notes in Computer Science, 2001, , 83-90.	1.3	1
95	Reconstructing 3D Boundary Element Heart Models from 2D Biplane Fluoroscopy. Lecture Notes in Computer Science, 2001, , 17-23.	1.3	4
96	Model extraction from magnetic resonance volume data using the deformable pyramid. Medical Image Analysis, 1999, 3, 387-406.	11.6	50
97	Nonfluoroscopic Localization of an Amagnetic Stimulation Catheter by Multichannel Magnetocardiography. PACE - Pacing and Clinical Electrophysiology, 1999, 22, 1210-1220.	1.2	20