Brooke D Esquivel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114462/publications.pdf

Version: 2024-02-01

8 papers

354 citations

1478505 6 h-index 1588992 8 g-index

9 all docs 9 docs citations

9 times ranked 584 citing authors

#	Article	IF	CITATIONS
1	Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility in <i>Saccharomyces cerevisiae</i> . MBio, 2018, 9, .	4.1	135
2	Mutations in <i>TAC1B</i> : a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. MBio, 2020, 11, .	4.1	101
3	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
4	Azole Drug Import into the Pathogenic Fungus Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 3390-3398.	3.2	30
5	Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. MBio, 2020, 11 , .	4.1	23
6	Accumulation of Azole Drugs in the Fungal Plant Pathogen Magnaporthe oryzae Is the Result of Facilitated Diffusion Influx. Frontiers in Microbiology, 2017, 8, 1320.	3.5	13
7	Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. MBio, 2022, 13, e0354521.	4.1	3
8	Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 651.	3.5	3